

AHEAD OF THE FLOW®

Butterfly Valves

Business-to-Business Solutions

Look to NIBCO for technology leadership.

The velocity with which e-business evolves demands that new products and services be continuously developed and introduced to keep our customers at the center of our business efforts. NIBCO provides an entire suite of business-to-business solutions that is changing the way we interact with customers.

NIBCOpartner.comsm is an exclusive set of secure web applications that allow quick access to customer-specific information and online order processing. This self-service approach gives you 24/7 access to your order status putting you in total control of your business.

Real time information includes:

- Online order entry
- Viewable invoices & reports
- Inventory availability
- Current price checks
- Order status
- Online library of price sheets, catalogs & submittals

Electronic Data Interchange (EDI) makes it possible to trade business documents at the speed of light. This technology cuts the cost of each transaction by eliminating the manual labor and paperwork involved in traditional order taking. This amounts to cost-savings, increased accuracy and better use of resources.

With EDI, you can trade:

- Purchase orders
- PO Acknowledgements
- Invoices

- Product activity data
- Advanced ship notices
- Remittance advice

Vendor Managed Inventory (VMI), a sophisticated service for automated inventory management, reduces your overhead by transferring inventory management, order entry and forecasting to NIBCO. This is an on-going, interactive partnership with NIBCO.

Through automation, VMI brings results:

- Improves customer service
- Optimum inventory efficiencies
- Better forecasting

- Cuts transaction costs
- Peace of mind
- Relief from day-to-day management

General Index Butterfly Valves

Visit our website for the most current information.

BUTTERFLY VALVES
HIGH PERFORMANCE BUTTERFLY VALVE
OPTIONS AND ACCESSORIES INDEX
ENGINEERING DATA.53-69Engineering Data Index.53Specifications.54-55Flow Data.56-57

Properties of Materials 58-61
Dimensional Requirements for Flange/Pipe Connections 62
Technical Information
Actuation Data Sheet
FIGURE NUMBER COMPARISONS
WARRANTY

Key to Butterfly Valve Figure Number System*

L	D -	D - 2 0		0		-	- 0 Operating	
Body	Body Body		Seat	Disc		& Bushing Combina		
Type	Material	Rating	Material	Material	Stem	Upper & Lower	Collar	Mechanism
L-Lug	D-Ductile Iron	L-Actuated	0-EPDM	0-Aluminum Bronze	0-416SS	Copper Alloy	Brass	0-Bare Stem
W-Wafer	C-Cast Iron	1-150 psi	1-Buna-N (Nitrile)	1-Ductile Iron ¹	1-416SS	316SS	Brass	1-Infinite Position
G-Groove	d	2-200 psi	2-Fluoroelastomer	2-CF8M	2-17-4PH3	316SS ³	316SS	Plate and Lock
F-Flanged		3-250 psi	5-UL/FM	6-EPDM Coated	5-416SS	PTFE/Bronze	_	3-Lever Lock (std)
		4-300 psi	7-Polyamide	Ductile Iron ²	7-416SS	PTFE	_	5-Gear
		5-285 psi	•	7-Buna-N Coated	8-316SS			
		6-350 psi		Brass or Ductile Iron	n ² 9-17-4PH			
		7-232 psi		8-Nylon Coated				
		•		Ductile Iron				

^{*}This key is a guide only, it is not intended to imply that all combinations can or will be produced.

Key to N200 Butterfly Valves

Series	Body Style	Seat Material	Disc Material	Operator
N200 = 2"-12"	1 = Wafer	3 = EPDM	5 = Aluminum Bronze	LH = Lever
N150 = 14"-24"	2 = Lug	4 = Buna	6 = Ductile Iron	GO = Gear
			8 = Nylon Coated Ductile In	on

High Performance Butterfly Valves Figure Number Key*

L	CS -	6	8	2		2	- 0				
Body	Body	Pressure	Seat	Disc	Stem & Bush	ing Combinations	Operating				
Type	Material	Class	Material	Material	Stem	Upper & Lower	Mechanism				
L-Lug	CS-Carbon	6-150	8-RPTFE	2-316 Stainless Steel	2-17-4PH	PTFE Coated	0-Bare Stem				
W-Wafer	Steel	7-300				Alloy 304SS	1-Infinite Position Throttling Plate (option)				
							3-Lever Handle (std)				
*This kev i	*This key is a guide only. It is not intended to infer that all combinations can or will be produced.										

¹ Electro nickel plated.

² Grooved and flanged end only.

³ Lug style 14" and larger are 316SS stem with bronze bushings.

Butterfly Valves

Factors to Consider When Choosing Butterfly Valves

Operating Life

Butterfly valves can provide many maintenance free cycles and still accommodate "bubble tight" shut off.

Pressure Drop

Energy costs go up with **excessive** pressure drop. The valve or valves are but one factor in a piping system that contribute to pressure drop. Of equal concern are these factors:

- · Flow area of piping.
- · Friction loss against pipe walls.
- Change of flow direction via fittings.

Butterfly valves have flow characteristics three times better than globe valves and approximately 75% of an equivalent size gate valve.

Versatility

Butterfly valves can be used for on/off service and throttling/balancing. They are superior in "versatility" as compared to a gate or globe valve. Butterfly valves have a wider range of chemical resistance due to the trim options and choice of elastomeric liners.

Weight

Installation dollars saved with lightweight butterfly valves as compared to heavyweight cast iron valves; i.e. a 10" butterfly may weigh 55 pounds, whereas a 10" iron gate may weigh 490 pounds. This can be an important savings when it is calculated over an entire system. The heavier the system, the stronger the pipe hangers, and the more expensive they become. So by considering the weight of a valve one can also **reduce** piping system costs.

Physical Size

Butterfly valves take up approximately 1/6 the space of a gate valve. Every cubic foot of a building costs money.

I.E.: 10" butterfly is about 21" high 10" iron gate is about 43" high

Bubble Tight Shut-Off

Gate and globe (metal to metal) seats cannot provide bubble tight shut-off. Resilient seated butterfly valves are bubble tight by design.

Ease of Operation

Butterfly valves offer 1/4 turn (90°) open to close. Gates and globes require multiple turns to open and close. Ease of opening or closing means that butterfly valves can employ less expensive operators.

Cost

A butterfly valve is generally 40% the cost of an iron gate valve, not only low initial cost but low installation costs also.

Maintenance

Properly installed butterfly valves are virtually self cleaning and are less susceptible to failure due to trash material in the line.

2000/3000/5000 Series Butterfly Valves

* Threaded Collar Bushing for positive stem retention (blow-out proof)

Body and Stem O-ring Seals of EPDM, Buna-N or Fluorocarbon.

Extended Neck for insulation up to 2".

Molded-in Liner fully supported by valve body at flange seals. Eliminates leakage between body and liner as in cartridge or boot type liners. Provides dead-end service without the need for a flange on the downstream side.

High-Strength Stainless Steel Stem materials with one-piece thru-disc design.

Upper and Lower Bushings are standard for smooth valve operation.

Streamlined Spherical Disc with high flow capacity.

Internal Stem/Disc Drive eliminates the need for pins or bolts which create additional leak paths, turbulence in the waterway and/or flow reduction.

Ductile Iron Body more durable than cast iron (reduces breakage).

"Blind-Hole" lower bushing prevents leakage.

A High-Pressure Resilient-Seated Butterfly Valve Featuring:

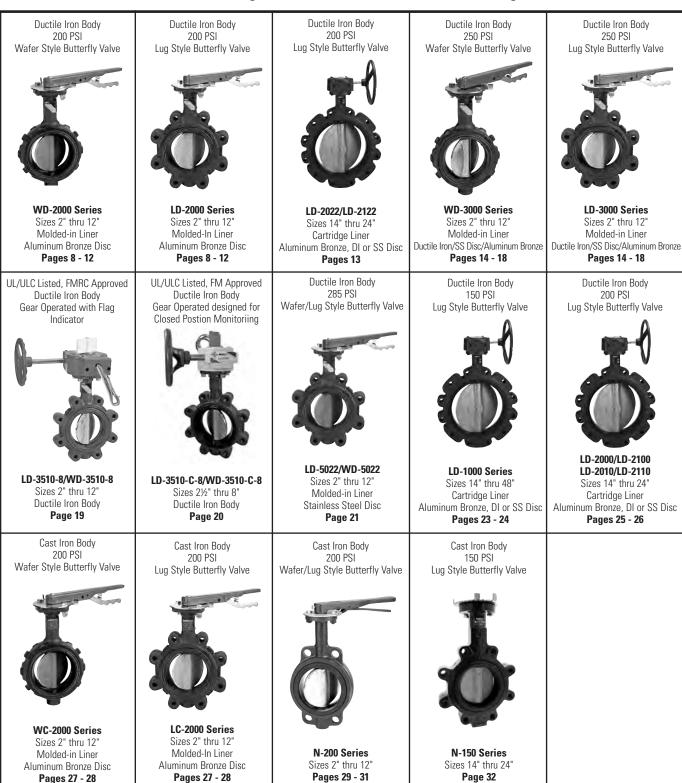
- Pressure rating to 250 psi for 3000 Series, 285 psi for 5000 Series, vacuum to 28" Mercury
- Wide choice of materials to suit customer's application
- Bubble-tight shutoff at full pressure rating
- 200/232/250 bi-directional dead end service rating without a downstream flange required

Operation

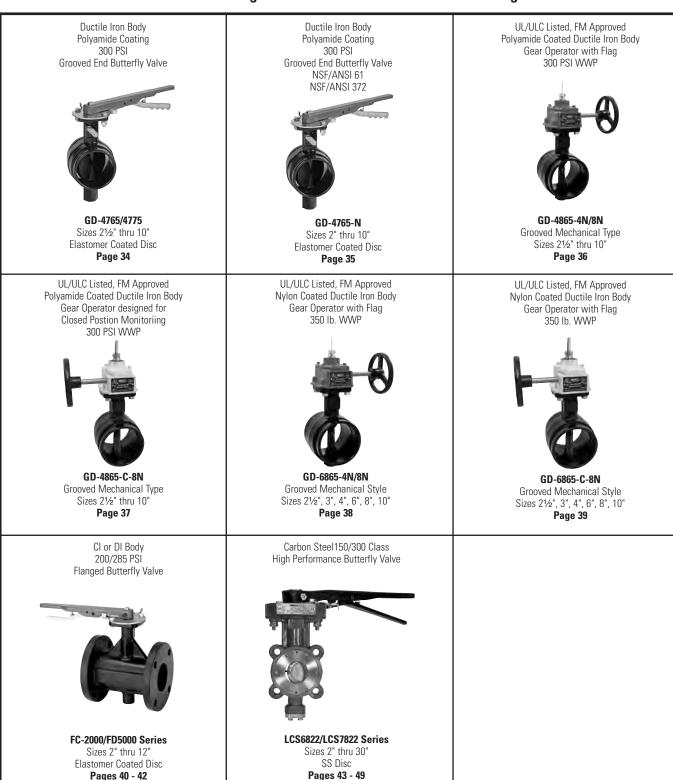
Bare shaft, lever-lock flow control handle, worm gear operator, electric and pneumatic actuators

Body Styles

Tapped full lug or wafer


^{*}Collar bushing is non-removable.

Butterfly Valves Illustrated Index


NIBCO

Visit www.nibco.com for on-line listing of information contained in this catalog.

Butterfly Valves Illustrated Index

Visit www.nibco.com for on-line listing of information contained in this catalog.

200 PSI Butterfly Valves

Ductile Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner • Lug and Wafer Style

Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges. Lug Style 200 PSI bi-directional dead end service rating without a downstream flange required.

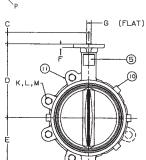
THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • U.S. COAST GUARD "CATEGORY A" • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO NSF/ANSI 61-8 COMMERCIAL HOT 180°F AND NSF/ANSI 61 AND 372

MATERIAL LIST

	WALLE CO.									
	PART	SPECIFICATION								
1.	Stem	Stainless Steel ASTM A582 Type 416								
2.	Collar Bushing	Brass ASTM B16								
3.	Stem Seal	EPDM Rubber								
4.	Body Seal	EPDM Rubber								
5.	Nameplate	Aluminum								
6.	Upper Bushing	Copper CDA 122								
7.	Liner	EPDM Rubber								
8.	Disc	Alum. Brz. ASTM B148 Alloy 955								
9.	Lower Bushing	Copper CDA 122								
10.	Body Wafer	Ductile Iron ASTM A536								
11.	Body Lug	Ductile Iron ASTM A536								
		·								

LD-2000 Lug Style EPDM Liner and Aluminum Bronze Disc

9


NOT RECOMMENDED FOR STEAM SERVICE

DIMENSIONS — WEIGHTS

Si	ze							Flat	Metal	Rubber	Square	Dia.
In.	mm.	Α	В	С	D	Е	F	G	Н		·J	N
2	50	2.53	4.00	1.25	5.38	2.88	.38	.312	1.688	1.812	3.25	.500
2½	65	2.90	4.69	1.25	5.88	3.27	.38	.370	1.812	1.938	3.25	.562
3	80	3.15	5.12	1.25	6.12	3.40	.38	.370	1.812	1.938	3.25	.562
4	100	4.09	6.12	1.25	6.88	4.00	.38	.403	2.062	2.188	3.25	.625
5	125	5.13	7.25	1.25	7.38	4.75	.38	.496	2.188	2.312	3.25	.750
6	150	6.13	8.25	1.25	8.00	5.29	.38	.496	2.188	2.312	3.25	.750
8	200	8.13	10.41	1.25	9.25	6.50	.50	.560	2.375	2.500	3.25	.875
10	250	10.13	12.52	1.25	10.50	8.00	.50	.686	2.688	2.812	4.75	1.125
12	300	12.13	15.00	1.25	12.00	9.25	.50	.748	3.000	3.125	4.75	1.250

Capscrew/Stud Data										101				
Si	ze	0	<u>P</u>	R	K	L	Wa	fer Lug	М		ight_		afer ight	
ln.	mm.	B.C.	Dia.	Dia.	No.	Dia.	Len	gth Length	B.C.	Lbs.	Kg.	Lbs.	Kg.	
2	50	3.25	.437	.437	4 5	5/8-11unc	:		4 3/4	7	3.2	5.5	2.5	
21/2	65	3.25	.437	.500	4 5	5/8-11unc	:	Defende	5 1/2	9	4.1	7.5	3.4	
3	80	3.25	.437	.500	4 5	5/8-11unc	;	Refer to butterfly	6	9.5	4.3	8	3.6	
4	100	3.25	.437	.562	8 5	5/8-11unc	:	valve	7 1/2	15	6.8	11	5.0	
_ 5	125	3.25	.437	.656	8 3	3/4-10unc	:	technical	8 1/2	21	9.5	15	6.8	
6	150	3.25	.437	.656	8 3	3/4-10unc	i	nformation	9 1/2	24	10.9	18	8.2	
8	200	3.25	.437	.781	8 3	3/4-10unc	:	for bolt	11 3/4	34	15.4	28	12.7	
10	250	5.00	.562	1.000	12	7/8-9unc		lengths	14 1/4	62	28.1	45.5	20.7	
12	300	5.00	.562	1.062	12	7/8-9unc			17	90	40.9	70	3 1.8	

For actuated service where a lower torque is required use NIBCO Fig. No. WDLXXX-0 or LDLXXX-0 series, sizes 2" thru 12" only. Maximum pressure rating of 100 PSI for wet application and 50 PSI for dry application.

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

to w

*Weighted average lead content ≤ 0.25%

200 PSI Butterfly Valves

Ductile Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner • Lug Style

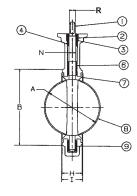
Sizes 2" through 12"

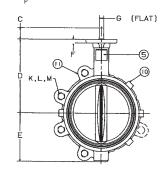
Install between Std. ASME Class 125/150 flanges. Lug Style 200 PSI bi-directional dead end service rating without a downstream flange required.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • U.S. COAST GUARD "CATEGORY A" • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO ANSI 372

	IVIATERIAL LIST									
	PART	SPECIFICATION								
1.	Stem	Stainless Steel ASTM A582 Type 416								
2.	Collar Bushing	Brass ASTM B16								
3.	Stem Seal	Buna-N Rubber Nitrile								
4.	Body Seal	Buna-N Rubber Nitrile								
5.	Nameplate	Aluminum								
6.	Upper Bushing	Copper CDA 122								
7.	Liner	Buna-N Rubber Nitrile								
8.	Disc	Ductile Iron ASTM A395 (nickel plated)								
9.	Lower Bushing	Copper CDA 122								
10.	Body Wafer	Ductile Iron ASTM A536								
11.	Body Lug	Ductile Iron ASTM A536								

NOT RECOMMENDED FOR STEAM SERVICE


LD-2010
Lug Style
EPDM Liner
and Ductile Disc


DIMENSIONS — WEIGHTS

Si	ze							Flat	Metal	Rubber	Square	Dia.
In.	mm.	Α	В	C	D	E	F	G	Н	<u> </u>	J	N
2	50	2.53	4.00	1.25	5.38	2.88	.38	.312	1.688	1.812	3.25	.500
2 1/2	65	2.90	4.69	1.25	5.88	3.27	.38	.370	1.812	1.938	3.25	.562
3	80	3.15	5.12	1.25	6.12	3.40	.38	.370	1.812	1.938	3.25	.562
4	100	4.09	6.12	1.25	6.88	4.00	.38	.403	2.062	2.188	3.25	.625
5	125	5.13	7.25	1.25	7.38	4.75	.38	.496	2.188	2.312	3.25	.750
6	150	6.13	8.25	1.25	8.00	5.29	.38	.496	2.188	2.312	3.25	.750
8	200	8.13	10.41	1.25	9.25	6.50	.50	.560	2.375	2.500	3.25	.875
10	250	10.13	12.52	1.25	10.50	8.00	.50	.686	2.688	2.812	4.75	1.125
12	300	12.13	15.00	1.25	12.00	9.25	.50	.748	3.000	3.125	4.75	1.250

Capscrew/Stud Data Lug							Wa	ıfer			
Siz	ze	0	P	R	K L V	Vafer Lug	М		ight	We	ight
In.	mm.	B.C.	Dia.	Dia.	No. Dia. L	ength Length	B.C.	Lbs.	Kg.	Lbs.	Kg.
2	50	3.25	.437	.437	4 5/8-11unc		4 3/4	7	3.2	5.5	2.5
2 1/2	65	3.25	.437	.500	4 5/8-11unc	<u> </u>	5 1/2	9	4.1	7.5	3.4
3	80	3.25	.437	.500	4 5/8-11unc	Refer to	6	9.5	4.3	8	3.6
4	100	3.25	.437	.562	8 5/8-11unc	butterfly valve	7 1/2	15	6.8	11	5.0
5	125	3.25	.437	.656	8 3/4-10unc	technical	8 1/2	21	9.5	15	6.8
6	150	3.25	.437	.656	8 3/4-10unc	information for bolt	9 1/2	24	10.9	18	8.2
8	200	3.25	.437	.781	8 3/4-10unc	lengths	11 3/4	34	15.4	28	12.7
10	250	5.00	.562	1.000	12 7/8-9unc		14 1/4	62	28.1	45.5	20.7
12	300	5.00	.562	1.062	12 7/8-9unc		17	90	40.9	70	31.8

For actuated service where a lower torque is required use NIBCO Fig. No. WDLXXX-0 or LDLXXX-0 series, sizes 2" thru 12" only. Maximum pressure rating of 100 PSI for wet application and 50 PSI for dry application

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

*Weighted average lead content ≤ 0.25%

200 PSI Butterfly Valves

Ductile Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner • Lug and Wafer Style

QAI (B)

Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges. Lug Style 200 PSI bi-directional dead end service rating without a downstream flange required.

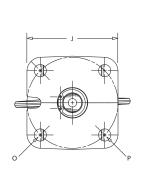
THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • U.S. COAST GUARD "CATEGORY A" • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO ANSI 372

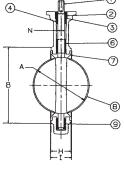
WD-2100

Wafer Style Buna-N Liner and Aluminum Bronze Disc

LD-2100

Lug Style Buna-N Liner and Aluminum Bronze Disc


MATERIAL LIST


	PART	SPECIFICATION
1.	Stem	Stainless Steel ASTM A582 Type 416
2.	Collar Bushing	Brass ASTM B16
3.	Stem Seal	Buna-N Rubber Nitrile
4.	Body Seal	Buna-N Rubber Nitrile
5.	Nameplate	Aluminum
6.	Upper Bushing	Copper CDA 122
7.	Liner	Buna-N Rubber Nitrile
8.	Disc	Alum. Brz. ASTM B148 Alloy 954/955
9.	Lower Bushing	Copper CDA 122
10.	Body Wafer	Ductile Iron ASTM A536
11.	Body Lug	Ductile Iron ASTM A536
		·

NOT RECOMMENDED FOR STEAM SERVICE

DIMENSIONS — WEIGHTS

Siz	ze							Flat	Metal	Rubber	Square	Dia.
ln.	mm.	Α	В	С	D	E	F	G	Н		<u></u> J	N
2	50	2.53	4.00	1.25	5.38	2.88	.38	.312	1.688	1.812	3.25	.500
2 1/2	65	2.90	4.69	1.25	5.88	3.27	.38	.370	1.812	1.938	3.25	.562
3	80	3.15	5.12	1.25	6.12	3.40	.38	.370	1.812	1.938	3.25	.562
4	100	4.09	6.12	1.25	6.88	4.00	.38	.403	2.062	2.188	3.25	.625
5	125	5.13	7.25	1.25	7.38	4.75	.38	.496	2.188	2.312	3.25	.750
6	150	6.13	8.25	1.25	8.00	5.29	.38	.496	2.188	2.312	3.25	.750
8	200	8.13	10.41	1.25	9.25	6.50	.50	.560	2.375	2.500	3.25	.875
10	250	10.13	12.52	1.25	10.50	8.00	.50	.686	2.688	2.812	4.75	1.125
12	300	12.13	15.00	1.25	12.00	9.25	.50	.748	3.000	3.125	4.75	1.250

						Caps	rew/Stud Data		Lug Weight		Wa	afer
Siz	ze	0	Р	R	K	L	Wafer Lug	M			We	ight
ln.	mm.	B.C.	Dia.	Dia.	No.	Dia.	Length Length	B.C.	Lbs.	Kg.	Lbs.	Kg.
2	50	3.25	.437	.437	4	5/8-11unc		4 3/4	7	3.2	5.5	2.5
2 1/2	65	3.25	.437	.500	4	5/8-11unc		5 1/2	9	4.1	7.5	3.4
3	80	3.25	.437	.500	4	5/8-11unc		6	9.5	4.3	8	3.6
4	100	3.25	.437	.562	8	5/8-11unc	butterfly valve	7 1/2	15	6.8	11	5.0
5	125	3.25	.437	.656	8	3/4-10unc	technical	8 1/2	21	9.5	15	6.8
6	150	3.25	.437	.656	8	3/4-10unc	information for bolt	9 1/2	24	10.9	18	8.2
8	200	3.25	.437	.781	8	3/4-10unc		11 3/4	34	15.4	28	12.7
10	250	5.00	.562	1.000	12	7/8-9unc		14 1/4	62	28.1	45.5	20.7
12	300	5.00	.562	1.062	12	7/8-9unc		17	90	40.9	70	31.8

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

For actuated service where a lower torque is required use NIBCO Fig. No. WDLXXX-0 or LDLXXX-0 series, sizes 2" thru 12" only. Maximum pressure rating of 100 PSI for wet application and 50 PSI for dry application

200 PSI Butterfly Valves

Ductile Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner • Lug and Wafer Style

Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges.

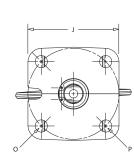
Lug Style 200 PSI bi-directional dead end service rating without a downstream flange required.

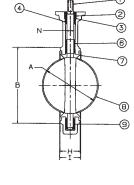
THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • U.S. COAST GUARD "CATEGORY A" • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO ANSI 372

MATERIAL LIST

		WAI LINAL LIST
	PART	SPECIFICATION
1.	Stem	Stainless Steel ASTM A582 Type 416
2.	Collar Bushing	Brass ASTM B16
3.	Stem Seal	EPDM Rubber
4.	Body Seal	EPDM Rubber
5.	Nameplate	Aluminum
6.	Upper Bushing	Copper CDA 122
7.	Liner	EPDM Rubber
8.	Disc	Ductile Iron ASTM A395 (nickel plated)
9.	Lower Bushing	Copper CDA 122
10.	Body Wafer	Ductile Iron ASTM A536
11.	Body Lug	Ductile Iron ASTM A536

WD-2110
Wafer Style
EPDM Liner
and Ductile Disc




LD-2110
Lug Style
EPDM Liner
and Ductile Disc

NOT RECOMMENDED FOR STEAM SERVICE

DIMENSIONS — WEIGHTS

Si	Size							G	Metal	Rubber	J	N
In.	Mm.	Α	В	C	D	E	F	Flat	Н		Square	Dia.
2	50	2.53	4.00	1.25	5.38	2.88	.38	.312	1.688	1.812	3.25	.500
2 1/2	65	2.90	4.69	1.25	5.88	3.27	.38	.370	1.812	1.938	3.25	.562
3	80	3.15	5.12	1.25	6.12	3.40	.38	.370	1.812	1.938	3.25	.562
4	100	4.09	6.12	1.25	6.88	4.00	.38	.403	2.062	2.188	3.25	.625
5	125	5.13	7.25	1.25	7.38	4.75	.38	.496	2.188	2.312	3.25	.750
6	150	6.13	8.25	1.25	8.00	5.29	.38	.496	2.188	2.312	3.25	.750
8	200	8.13	10.41	1.25	9.25	6.50	.50	.560	2.375	2.500	3.25	.875
10	250	10.13	12.52	1.25	10.50	8.00	.50	.686	2.688	2.812	4.75	1.125
12	300	12.13	15.00	1.25	12.00	9.25	.50	.748	3.000	3.125	4.75	1.250

(FLAT)

Capscrew/Stud Data								Lug		Wafer		
Siz	ze	0	<u>P</u>	<u>R</u>	K	<u>L</u>	Wafer Lug	M		ig ight	Weight	
<u>In. r</u>	nm.	B.C.	Dia.	Dia.	No.	Dia.	Length Lengtl	ı B.C.	Lbs.	Kg.	Lbs.	Kg.
2	50	3.25	.437	.437	4 5	5/8-11unc		4 3/4	7	3.2	5.5	2.5
2 1/2	65	3.25	.437	.500	4 5	5/8-11unc		5 1/2	9	4.1	7.5	3.4
3	80	3.25	.437	.500	4 5	5/8-11unc	Refer to	6	9.5	4.3	8	3.6
4	100	3.25	.437	.562	8 5	5/8-11unc	butterfly valve	7 1/2	15	6.8	11	5.0
5	125	3.25	.437	.656	8 3	3/4-10unc	technical	8 1/2	21	9.5	15	6.8
6	150	3.25	.437	.656	8 3	3/4-10unc	information for bolt	9 1/2	24	10.9	18	8.2
8	200	3.25	.437	.781	8 3	3/4-10unc	lengths	11 3/4	34	15.4	28	12.7
10	250	5.00	.562	1.000	12	7/8-9unc		14 1/4	62	28.1	45.5	20.7
12	300	5.00	.562	1.062	12	7/8-9unc		17	90	40.9	70	31.8
-	The state of the s											

For actuated service where a lower torque is required use NIBCO Fig. No. WDLXXX-0 or LDLXXX-0 series, sizes 2" thru 12" only. Maximum pressure rating of 100 PSI for wet application and 50 PSI for dry application

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

^{*}Weighted average lead content ≤ 0.25%

200 PSI Butterfly Valves

Ductile Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner • Lug and Wafer Style • 316 S.S. Trim

Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges. Lug Style 200 PSI bi-directional dead end service rating without a downstream flange required.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD ● U.S. COAST GUARD "CATEGORY A" ● CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO NSF/ANSI 61-8 COMMERCIAL HOT 180°F NSF/ANSI 372

MATERIAL LIST

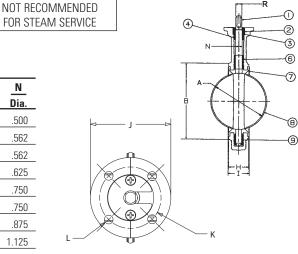
	PART	SPECIFICATION
1.	Stem	Stainless Steel ASTM A564 Type 17-4PH
2.	Collar Bushing	Stainless Steel ASTM A276 Type 316
3.	Stem Seal	Options: See Below*
4.	Body Seal	Options: See Below*
5.	Nameplate	Aluminum
6.	Upper Bushing	Stainless Steel ASTM A276 Type 316
7.	Liner	Options: See Below*
8.	Disc	Stainless Steel ASTM A743 Grade CF8M
9.	Lower Bushing	Stainless Steel ASTM A276 Type 316
10.	Body Wafer	Ductile Iron ASTM A536
11.	Body Lug	Ductile Iron ASTM A536
	.,,	·

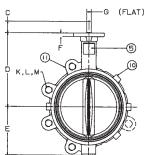
*Optional Liners/Seals: 0 - EPDM 1 - Buna-N (Nitrile) 2 - Fluoroelastomer Note: only EPDM liners meet NSF 61 certification.

DIMENSIONS — WEIGHTS

<u>s</u>	ize							<u>G</u>	Metal	Rubber	<u>J</u>	<u>N</u>
In.	mm.	Α	В	С	D	E	F	Flat	Н		Square	Dia.
2	50	2.53	4.00	1.25	5.38	2.88	.38	.312	1.688	1.812	3.25	.500
2 1/2	65	2.90	4.69	1.25	5.88	3.27	.38	.370	1.812	1.938	3.25	.562
3	80	3.15	5.12	1.25	6.12	3.40	.38	.370	1.812	1.938	3.25	.562
4	100	4.09	6.12	1.25	6.88	4.00	.38	.403	2.062	2.188	3.25	.625
5	125	5.13	7.25	1.25	7.38	4.75	.38	.496	2.188	2.312	3.25	.750
6	150	6.13	8.25	1.25	8.00	5.29	.38	.496	2.188	2.312	3.25	.750
8	200	8.13	10.41	1.25	9.25	6.50	.50	.560	2.375	2.500	3.25	.875
10	250	10.13	12.52	1.25	10.50	8.00	.50	.686	2.688	2.812	4.75	1.125
12	300	12.13	15.00	1.25	12.00	9.25	.50	.748	3.000	3.125	4.75	1.250

Capscrew/Stud Data									Lug		Wafer		
Si	ze	0	<u>P</u>	R	K	L	w	afer Lug	М		ig eight		ight_
In. r	nm.	B.C.	Dia.	Dia.	No.	Dia.	Le	ngth Length	B.C.	Lbs.	Kg.	Lbs.	Kg.
2	50	3.25	.437	.437	4 5	5/8-11und	2		4 3/4	7	3.2	5.5	2.5
2 1/2	65	3.25	.437	.500	4 5	5/8-11und	2		5 1/2	9	4.1	7.5	3.4
3	80	3.25	.437	.500	4 5	5/8-11unc	2	Refer to	6	9.5	4.3	8	3.6
4	100	3.25	.437	.562	8 5	5/8-11und	2	butterfly valve	7 1/2	15	6.8	11	5.0
5	125	3.25	.437	.656	8 3	3/4-10und	2	technical	8 1/2	21	9.5	15	6.8
6	150	3.25	.437	.656	8 3	3/4-10und	2	information for bolt	9 1/2	24	10.9	18	8.2
8	200	3.25	.437	.781	8 3	3/4-10und	2	lengths	11 3/4	34	15.4	28	12.7
10	250	5.00	.562	1.000	12	7/8-9unc			14 1/4	62	28.1	45.5	20.7
12	300	5.00	.562	1.062	12	7/8-9unc			17	90	40.9	70	31.8




NSF/ANSI 61 NSF/ANSI 372

Wafer Style Optional Liner and CF8M Disc

LD-2*22 Lug Style Optional Liner and CF8M Disc

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Visit our website for the most current information.

200 PSI Butterfly Valves

Ductile Iron Body • Cartridge Liner • Lug Style

Sizes 14", 16", 18", 20", and 24"

Install between Std. ASME Class 125/150 flanges. Is 150 PSI bi-directional dead end service rating without a downstream flange. Do NOT install between AWWA C115/A21.5 type flanges.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67
STANDARD • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO
NSF/ANSI 372

MATERIAL LIST

		MAI LINAL LIOI
	PART	SPECIFICATION
1.	Screw	Steel, ANSI 1035 (2) 16" & 18" (4) 20" & 24"
2.	Bottom Plate	Ductile Iron ASTM A536 grade 65-45-12
3.	O-ring	Nitrile ASTM D2000
4.	Body	Ductile Iron ASTM a536 grade 65-45-12
5.	Long Bushing	Bronze ASTM B584 UNS C83600
6.	Stem	Stainless Steel ASTM A276 UNS S31600
7.	Disc	Stainless Steel ASTM A351 CF8M
8.	Taper Pin (2)	Stainless Steel ASTM A564 UNS S17400
9.	Seat	Nitrile ASTM D2000
		EPDM ASTM D2000
10.	Nameplate	Aluminum
11.	Short Bushing (2)	Bronze ASTM B584 UNS C83600
12.	O-ring	Nitrile ASTM D2000
13.	Key	Steel, ASTM A108 UNS C10450
14.	Screw	Steel, ANSI 1035 (6) 14" thru 18" (8) 20" & 24"

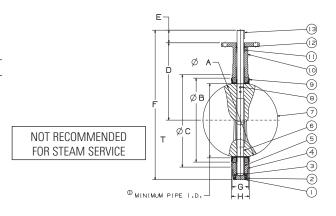
^{**}NOTE: 24" has 431 SS stem

DIMENSIONS — WEIGHTS

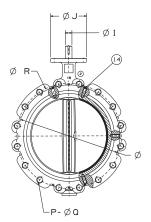
S	ize	Α	Minimum.	В	<u>c</u>				G	<u>H</u>	1
In.	mm	Dia.	Pipe I.D.	Dia.	Dia.	D	E	F	Body	Seat	Dia.
14"	350	13.12	13.02	14.77	17.20	14.49	1.77	26.77	3.00	3.13	1.244
16"	400	15.34	15.20	17.30	19.21	15.75	2.02	29.93	3.37	3.54	1.305
18"	450	17.34	17.09	19.31	21.22	16.61	2.02	31.54	4.12	4.29	1.494
20"	500	19.36	18.90	21.08	23.31	18.90	2.53	35.64	5.13	5.31	1.619
24"	600	23.33	23.05	25.71	32.09	22.13	2.76	42.96	5.96	6.14	1.993

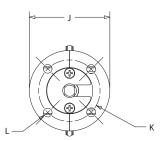
DIMENSIONS — WEIGHTS

Si	ize	J	K	<u>L</u>	M		0	R	<u>T</u>	WEI	<u>GHT</u>
In.	mm	Dia.	Dia.	Dia.	Drive Key		Dia.	Dia.	ln.	Lbs.	Kg
14"	350	5.51	4.25	0.55	.250 x 1.125 WOODRUFF #809	12	1"-8 UNC	18.75	17.52	141	64
16"	400	7.76	6.25	0.83	.312 X.312 X 1.811 LONG	16	1"-8 UNC	21.25	20.08	199	90
18"	450	7.76	6.25	0.83	.375 X .375 X 1.881 LONG	16	1-1/8"-7 UNC	22.75	21.26	261	119
20"	500	7.76	6.25	0.83	.375 x .375 x 1.811 LONG	20	1-1/8"-7 UNC	25.00	24.02	395	179
24"	600	10.87	8.50	0.94	.500 x .500 x 2.362 LONG	20	1-1/4"-7 UNC	29.50	27.87	591	268


WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Lug Style EPDM or Buna-N Liner Stainless Steel Disc





14" Reference Lower Shaft Well

250 PSI Butterfly Valves

Ductile Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner • Lug and Wafer Style

Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges. Lug Style 200 PSI bi-directional dead end service rating without a downstream flange required.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • U.S. COAST GUARD "CATEGORY A" • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO NSF/ANSI 61-8 COMMERCIAL HOT 180°F AND NSF/ANSI 61 AND 372

MATERIAL LIST

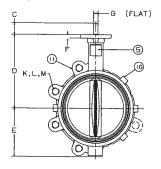
	PART	SPECIFICATION							
1.	Stem	Stainless Steel ASTM A582 Type 416							
2.	Collar Bushing	Brass ASTM B16							
3.	Stem Seal	EPDM Rubber							
4.	Body Seal	EPDM Rubber							
5.	Nameplate	Aluminum							
6.	Upper Bushing	Copper CDA 122							
7.	Liner	EPDM Rubber							
8.	Disc	Alum. Brz. ASTM B148 Alloy 954/955							
9.	Lower Bushing	Copper CDA 122							
10.	Body Wafer	Ductile Iron ASTM A536							
11.	Body Lug	Ductile Iron ASTM A536							
		<u> </u>							

NSF/ANSI 61

(II)

(2)

Wafer Style EPDM Liner and Aluminum Bronze Disc


LD-3000 Lug Style EPDM Liner and Aluminum Bronze Disc

NOT RECOMMENDED FOR STEAM SERVICE

DIMENSIONS — WEIGHTS

Size							G	Metal	Rubber	J	N
In. mm.	Α	В	С	D	E	F	Flat	Н	1	Square	Dia.
2 50	2.53	4.00	1.25	5.38	2.88	.38	.312	1.688	1.812	3.25	.500
2 1/2 65	2.90	4.69	1.25	5.88	3.27	.38	.370	1.812	1.938	3.25	.562
3 80	3.15	5.12	1.25	6.12	3.40	.38	.370	1.812	1.938	3.25	.562
4 100	4.09	6.12	1.25	6.88	4.00	.38	.403	2.062	2.188	3.25	.625
5 125	5.13	7.25	1.25	7.38	4.75	.38	.496	2.188	2.312	3.25	.750
6 150	6.13	8.25	1.25	8.00	5.29	.38	.496	2.188	2.312	3.25	.750
8 200	8.13	10.41	1.25	9.25	6.50	.50	.560	2.375	2.500	3.25	.875
10 250	10.13	12.52	1.25	10.50	8.00	.50	.686	2.688	2.812	4.75	1.125
12 300	12.13	15.00	1.25	12.00	9.25	.50	.748	3.000	3.125	4.75	1.250

						Capsc	rew/	Stud Data		11	ид	w	afer
Si	ze	0	P	R	K	K L Wafer		afer Lug	M	Weight			ight
ln.	mm.	B.C.	Dia.	Dia.	No.	Dia.	Lei	ngth Length	B.C.	Lbs.	Kg.	Lbs.	Kg.
2	50	3.25	.437	.437	4 5	5/8-11und	:_[4 3/4	7	3.2	5.5	2.5
2 1/2	65	3.25	.437	.500	4 5	5/8-11und	;		5 1/2	9	4.1	7.5	3.4
3	80	3.25	.437	.500	4 5	5/8-11und		Refer to	6	9.5	4.3	8	3.6
4	100	3.25	.437	.562	8 5	5/8-11unc	;	butterfly valve	7 1/2	15	6.8	11	5.0
_ 5	125	3.25	.437	.656	8 3	3/4-10und	;	technical	8 1/2	21	9.5	15	6.8
6	150	3.25	.437	.656	8 3	3/4-10und	;	information for bolt	9 1/2	24	10.9	18	8.2
8	200	3.25	.437	.781	8 3	3/4-10und	;	lengths	11 3/4	34	15.4	28	12.7
_10	250	5.00	.562	1.000	12	7/8-9unc			14 1/4	62	28.1	45.5	20.7
_12	300	5.00	.562	1.062	12	7/8-9unc			17	90	40.9	70	31.8

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Visit our website for the most current information.

250 PSI Butterfly Valves

Ductile Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner • Lug and Wafer Style

Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges.

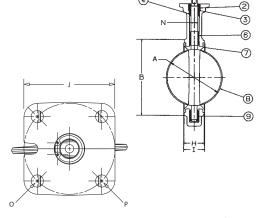
Lug Style 250 PSI bi-directional dead end service rating without a downstream flange required.

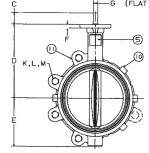
THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • U.S. COAST GUARD "CATEGORY A" • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO ANSI 372

ΜΔΤΕΡΙΔΙ ΙΙςΤ

		WAI LINAL LIST
	PART	SPECIFICATION
1.	Stem	Stainless Steel ASTM A582 Type 416
2.	Collar Bushing	Brass ASTM B16
3.	Stem Seal	EPDM Rubber
4.	Body Seal	EPDM Rubber
5.	Nameplate	Aluminum
6.	Upper Bushing	Copper CDA 122
7.	Liner	EPDM Rubber
8.	Disc	Ductile Iron ASTM A395 (nickel plated)
9.	Lower Bushing	Copper CDA 122
10.	Body Wafer	Ductile Iron ASTM A536
11.	Body Lug	Ductile Iron ASTM A536

Lug Style **EPDM Liner** and Ductile Disc


NOT RECOMMENDED FOR STEAM SERVICE


DIMENSIONS — WEIGHTS

Si	ize							G	Metal	Rubber	J	N
In.	Mm.	Α	В	С	D	E	F	Flat	Н	1	Square	Dia.
2	50	2.53	4.00	1.25	5.38	2.88	.38	.312	1.688	1.812	3.25	.500
2 1/2	65	2.90	4.69	1.25	5.88	3.27	.38	.370	1.812	1.938	3.25	.562
3	80	3.15	5.12	1.25	6.12	3.40	.38	.370	1.812	1.938	3.25	.562
4	100	4.09	6.12	1.25	6.88	4.00	.38	.403	2.062	2.188	3.25	.625
5	125	5.13	7.25	1.25	7.38	4.75	.38	.496	2.188	2.312	3.25	.750
6	150	6.13	8.25	1.25	8.00	5.29	.38	.496	2.188	2.312	3.25	.750
8	200	8.13	10.41	1.25	9.25	6.50	.50	.560	2.375	2.500	3.25	.875
10	250	10.13	12.52	1.25	10.50	8.00	.50	.686	2.688	2.812	4.75	1.125
12	300	12.13	15.00	1.25	12.00	9.25	.50	.748	3.000	3.125	4.75	1.250

	Capscrew/Stud Data Lug Wafer												
Siz	ze	0	<u>P</u>	R	K	L	Wafer	Lug	M		ight_		ight_
ln. n	nm.	B.C.	Dia.	Dia.	No.	Dia.	Length L	•	B.C.	Lbs.	Kg.	Lbs.	Kg.
2	50	3.25	.437	.437	4 5	5/8-11und	:		4 3/4	7	3.2	5.5	2.5
2 1/2	65	3.25	.437	.500	4 5	5/8-11uno	:		5 1/2	9	4.1	7.5	3.4
3	80	3.25	.437	.500	4 5	5/8-11uno			6	9.5	4.3	8	3.6
4	100	3.25	.437	.562	8 5	5/8-11und	buttei valv	, ,	7 1/2	15	6.8	11	5.0
_ 5	125	3.25	.437	.656	8 3	3/4-10und	techni	ical	8 1/2	21	9.5	15	6.8
6	150	3.25	.437	.656	8 3	3/4-10und	informa for b		9 1/2	24	10.9	18	8.2
8	200	3.25	.437	.781	8 3	3/4-10und			11 3/4	34	15.4	28	12.7
_10	250	5.00	.562	1.000	12	7/8-9unc	_		14 1/4	62	28.1	45.5	20.7
12	300	5.00	.562	1.062	12	7/8-9unc			17	90	40.9	70	31.8

For actuated service where a lower torque is required use NIBCO Fig. No. WDLXXX-0 or LDLXXX-0 series, sizes 2" thru 12" only. Maximum pressure rating of 100 PSI for wet application and 50 PSI for dry application

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

^{*}Weighted average lead content ≤ 0.25%

250 PSI Butterfly Valves

Ductile Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner • Lug and Wafer Style

QA (8) US

Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges. Lug style 200 PSI bi-directional dead end service rating without a downstream flange required.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • U.S. COAST GUARD "CATEGORY A" • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO ANSI 372

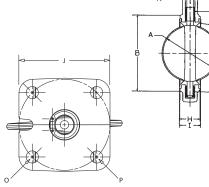
MATERIAL LIST

	=								
	PART	SPECIFICATION							
1.	Stem	Stainless Steel ASTM A582 Type 416							
2.	Collar Bushing	Brass ASTM B16							
3.	Stem Seal	Buna-N Rubber Nitrile							
4.	Body Seal	Buna-N Rubber Nitrile							
5.	Nameplate	Aluminum							
6.	Upper Bushing	Copper CDA 122							
7.	Liner	Buna-N Rubber Nitrile							
8.	Disc	Alum. Brz. ASTM B148 Alloy 954/955							
9.	Lower Bushing	Copper CDA 122							
10.	Body Wafer	Ductile Iron ASTM A536							
11.	Body Lug	Ductile Iron ASTM A536							

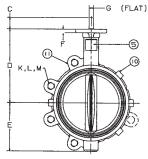
WD-3100
Wafer Style
Buna-N Liner
and Aluminum
Bronze Disc

LD-3100 Lug Style Buna-N Liner and Aluminum Bronze Disc

3


⑥ ⑦

> ® •


NOT RECOMMENDED FOR STEAM SERVICE

DIMENSIONS — WEIGHTS

Siz	ze							G	Metal	Rubber	J	N
ln.	mm.	Α	В	С	D	E	F	Flat	Н	I	Square	Dia.
2	50	2.53	4.00	1.25	5.38	2.88	.38	.312	1.688	1.812	3.25	.500
2 1/2	65	2.90	4.69	1.25	5.88	3.27	.38	.370	1.812	1.938	3.25	.562
3	80	3.15	5.12	1.25	6.12	3.40	.38	.370	1.812	1.938	3.25	.562
4	100	4.09	6.12	1.25	6.88	4.00	.38	.403	2.062	2.188	3.25	.625
5	125	5.13	7.25	1.25	7.38	4.75	.38	.496	2.188	2.312	3.25	.750
6	150	6.13	8.25	1.25	8.00	5.29	.38	.496	2.188	2.312	3.25	.750
8	200	8.13	10.41	1.25	9.25	6.50	.50	.560	2.375	2.500	3.25	.875
10	250	10.13	12.52	1.25	10.50	8.00	.50	.686	2.688	2.812	4.75	1.125
12	300	12.13	15.00	1.25	12.00	9.25	.50	.748	3.000	3.125	4.75	1.250

	Capscrew/Stud Data										
Siz	ze	0	P	R	K L \	Nafer Lug	M	Lu We	ig ight		iter ight
ln.	mm.	B.C.	Dia.	Dia.		ength Length	B.C.	Lbs.	Kg.	Lbs.	Kg.
2	50	3.25	.437	.437	4 5/8-11unc		4 3/4	7	3.2	5.5	2.5
2 1/2	65	3.25	.437	.500	4 5/8-11unc		5 1/2	9	4.1	7.5	3.4
3	80	3.25	.437	.500	4 5/8-11unc	Refer to	6	9.5	4.3	8	3.6
4	100	3.25	.437	.562	8 5/8-11unc	butterfly valve	7 1/2	15	6.8	11	5.0
5	125	3.25	.437	.656	8 3/4-10unc	technical	8 1/2	21	9.5	15	6.8
6	150	3.25	.437	.656	8 3/4-10unc	information for bolt	9 1/2	24	10.9	18	8.2
8	200	3.25	.437	.781	8 3/4-10unc	lengths	11 3/4	34	15.4	28	12.7
10	250	5.00	.562	1.000	12 7/8-9unc		14 1/4	62	28.1	45.5	20.7
12	300	5.00	.562	1.062	12 7/8-9unc		17	90	40.9	70	31.8

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Visit our website for the most current information.

250 PSI Butterfly Valves

Ductile Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner • Lug and Wafer Style

Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges. Lug Style 250 PSI bi-directional dead end service rating without a downstream flange required.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • U.S. COAST GUARD "CATEGORY A" • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO ANSI 372

ΜΑΤΕΡΙΔΙ ΙΙςΤ

	IVIA	I ENIAL LIST
	PART	SPECIFICATION
1.	Stem	Stainless Steel ASTM A582 Type 416
2.	Collar Bushing	Brass ASTM B16
3.	Stem Seal	Buna-N Rubber
4.	Body Seal	Buna-N Rubber
5.	Nameplate	Aluminum
6.	Upper Bushing	Copper CDA 122
7.	Liner	Buna-N Rubber
8.	Disc	Ductile Iron ASTM A395 (Plated)
9.	Lower Bushing	Copper CDA 122
10.	Body Wafer	Ductile Iron ASTM A536
11.	Body Lug	Ductile Iron ASTM A536

and Ductile Disc

Lug Style Buna-N Liner and Ductile Disc

NOT RECOMMENDED FOR STEAM SERVICE

DIMENSIONS — WEIGHTS

Si	ze							G	Metal	Rubber	J	N
ln.	mm.	Α	В	С	D	Е	F	Flat	Н	ı	Square	Dia.
2	50	2.53	4.00	1.25	5.38	2.88	.38	.312	1.688	1.812	3.25	.500
2 1/2	65	2.90	4.69	1.25	5.88	3.27	.38	.370	1.812	1.938	3.25	.562
3	80	3.15	5.12	1.25	6.12	3.40	.38	.370	1.812	1.938	3.25	.562
4	100	4.09	6.12	1.25	6.88	4.00	.38	.403	2.062	2.188	3.25	.625
5	125	5.13	7.25	1.25	7.38	4.75	.38	.496	2.188	2.312	3.25	.750
6	150	6.13	8.25	1.25	8.00	5.29	.38	.496	2.188	2.312	3.25	.750
8	200	8.13	10.41	1.25	9.25	6.50	.50	.560	2.375	2.500	3.25	.875
10	250	10.13	12.52	1.25	10.50	8.00	.50	.686	2.688	2.812	4.75	1.125
12	300	12.13	15.00	1.25	12.00	9.25	.50	.748	3.000	3.125	4.75	1.250

	Capscrew/Stud Data Lug Wafer											
Siz	ze	0	Р	R	K	L	Wafer Lug	M		ight	Weight	
ln.	mm.	B.C.	Dia.	Dia.	No.	Dia.	Length Lengt	h B.C.	Lbs.	Kg.	Lbs.	Kg.
_ 2	50	3.25	.437	.437	4 5	5/8-11unc		4 3/4	7	3.2	5.5	2.5
2 1/2	65	3.25	.437	.500	4 5	5/8-11unc		5 1/2	9	4.1	7.5	3.4
3	80	3.25	.437	.500	4 5	5/8-11unc	Refer to	6	9.5	4.3	8	3.6
4	100	3.25	.437	.562	8 5	5/8-11unc	butterfly valve	7 1/2	15	6.8	11	5.0
5	125	3.25	.437	.656	8 3	3/4-10unc	technical	8 1/2	21	9.5	15	6.8
6	150	3.25	.437	.656	8 3	3/4-10unc	information for bolt	9 1/2	24	10.9	18	8.2
8	200	3.25	.437	.781	8 3	3/4-10unc	lengths	11 3/4	34	15.4	28	12.7
_10	250	5.00	.562	1.000	12	7/8-9unc		14 1/4	62	28.1	45.5	20.7
12	300	5.00	.562	1.062	12	7/8-9unc		17	90	40.9	70	31.8
			_									

For actuated service where a lower torque is required use NIBCO Fig. No. WDLXXX-0 or LDLXXX-0 series, sizes 2" thru 12" only. Maximum pressure rating of 100 PSI for wet application and 50 PSI for dry application

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

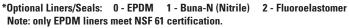
Visit our website for the most current information.

(FLAT)

^{*}Weighted average lead content ≤ 0.25%

250 PSI Butterfly Valves

Ductile Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner • Lug and Wafer Style • 316 S.S. Trim


Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges. Lug Style 250 PSI bi-directional dead end service rating without a downstream flange required.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • U.S. COAST GUARD "CATEGORY A" • LD/WD-3022 THIRD PARTY CERTIFIED BY TRUESDAIL LABS TO NSF/ANSI 61 AND 372

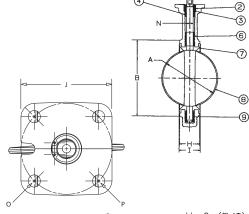
MATERIAL LIST

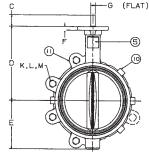
	PART	SPECIFICATION
1.	Stem	Stainless Steel ASTM A564 Type 17-4PH
2.	Collar Bushing	Stainless Steel ASTM A276 Type 316
3.	Stem Seal	Options: See Below*
4.	Body Seal	Options: See Below*
5.	Nameplate	Aluminum
6.	Upper Bushing	Stainless Steel ASTM A276 Type 316
7.	Liner	Options: See Below*
8.	Disc	Stainless Steel ASTM A743 Grade CF8M
9.	Lower Bushing	Stainless Steel ASTM A276 Type 316
10.	Body Wafer	Ductile Iron ASTM A536
11.	Body Lug	Ductile Iron ASTM A536

NSF/ANSI 61 NSF/ANSI 372

WD-3*22 Wafer Style Optional Liner and CF8M Disc

LD-3*22 Lug Style Optional Liner and CF8M Disc


NOT RECOMMENDED FOR STEAM SERVICE


DIMENSIONS — WEIGHTS

S	ize							G	Metal	Rubber	J	N
In.	mm.	Α	В	С	D	E	F	Flat	Н		Square	Dia.
2	50	2.53	4.00	1.25	5.38	2.88	.38	.312	1.688	1.812	3.25	.500
2½	65	2.90	4.69	1.25	5.88	3.27	.38	.370	1.812	1.938	3.25	.562
3	80	3.15	5.12	1.25	6.12	3.40	.38	.370	1.812	1.938	3.25	.562
4	100	4.09	6.12	1.25	6.88	4.00	.38	.403	2.062	2.188	3.25	.625
5	125	5.13	7.25	1.25	7.38	4.75	.38	.496	2.188	2.312	3.25	.750
6	150	6.13	8.25	1.25	8.00	5.29	.38	.496	2.188	2.312	3.25	.750
8	200	8.13	10.41	1.25	9.25	6.50	.50	.560	2.375	2.500	3.25	.875
10	250	10.13	12.52	1.25	10.50	8.00	.50	.686	2.688	2.812	4.75	1.125
12	300	12.13	15.00	1.25	12.00	9.25	.50	.748	3.000	3.125	4.75	1.250

				_		Capscr	ew/Stud Data	l		Lı	ıa	Wa	ıfer
Si	ze	0	P	R	K	L	Wafer Lu	0	M		ight	We	ight
In. r	nm.	B.C.	Dia.	Dia.	No.	Dia.	Length Leng	•	B.C.	Lbs.	Kg.	Lbs.	Kg.
2	50	3.25	.437	.437	4 5	5/8-11unc	:		4 3/4	7	3.2	5.5	2.5
2½	65	3.25	.437	.500	4 5	5/8-11unc	:	L	5 1/2	9	4.1	7.5	3.4
3	80	3.25	.437	.500	4 5	5/8-11unc			6	9.5	4.3	8	3.6
4	100	3.25	.437	.562	8 5	5/8-11unc	butterfly valve		7 1/2	15	6.8	11	5.0
5	125	3.25	.437	.656	8 3	3/4-10und	technical	L	8 1/2	21	9.5	15	6.8
6	150	3.25	.437	.656	8 3	3/4-10und	information for bolt	۱ 🗌	9 1/2	24	10.9	18	8.2
8	200	3.25	.437	.781	8 3	3/4-10und			11 3/4	34	15.4	28	12.7
10	250	5.00	.562	1.000	12	7/8-9unc			14 1/4	62	28.1	45.5	20.7
12	300	5.00	.562	1.062	12	7/8-9unc			17	90	40.9	70	31.8

For actuated service where a lower torque is required use NIBCO Fig. No. WDLXXX-0 or LDLXXX-0 series, sizes 2" thru 12" only. Maximum pressure rating of 100 PSI for wet application and 50 PSI for dry application.

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Visit our website for the most current information.



250 lb. WWP UL/FM Butterfly Valves

Fire Protection Valve • Wafer or Lug Style Body • Molded-In Seat • Accepts Internal Supervisory Switches

250 PSI/17.2 bar non-shock cold water

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • UL/ULC LISTED • FMRC APPROVED • UL LISTED FOR INDOOR AND OUTDOOR SERVICE • CALIFORNIA STATE FIRE MARSHAL LISTING NO. 7770-1243:104 • U.S. COAST GUARD "CATEGORY A" • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO ANSI 372

⁻⁴ version no switches

Note: wafer body will mate with ANSI or ISO flanges. O.D. of wafer body notched to fit ISO bolt circle.

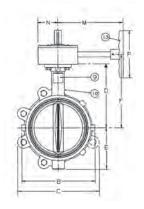
Lug body available with ISO flange dimensions and metric bolt hole threads.

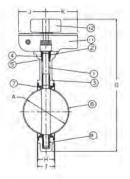
For dead-end service use lug style (rated 200 PSI for this service).

DIMENSIONS—WEIGHTS-

											Din	nensio	ons								
S	ize	-	1	E	3	(;)		Ε	F			G		Н		<u></u>		J
In.	mm.	ln.	mm.	ln.	mm.	ln.	mm.	In.	mm.	In.	mm.	In.	mm.	ln.	mm.	ln.	mm.	In.	mm.	In. ı	mm.
2	50	2.53	64	4.88	124	4.62	117	5.38	137	2.88	73	6.89	175	12.75	324	1.68	43	1.81	46	2.91	74
21/2	65	2.90	74	5.62	143	5.12	130	5.88	149	3.25	83	7.36	187	13.63	346	1.81	46	1.94	49	2.91	74
3	80	3.17	81	6.12	155	5.50	140	6.12	155	3.38	86	7.60	193	14.00	356	1.81	46	1.94	49	2.91	74
4	100	4.17	106	7.00	178	8.25	210	6.88	175	4.00	102	8.39	213	15.38	391	2.06	52	2.19	56	2.91	74
5	125	5.17	131	8.25	210	9.38	238	7.38	187	4.75	121	8.86	225	16.63	422	2.19	56	2.31	59	2.91	74
6	150	6.17	157	9.25	235	10.25	260	8.00	203	5.25	133	9.49	241	17.75	451	2.19	56	2.31	59	2.91	74
8	200	8.17	208	11.62	295	12.38	314	9.25	235	6.50	165	10.75	273	20.25	514	2.38	60	2.50	64	2.91	74
10	250	10.17	258	14.25	362	15.50	394	10.50	267	8.00	203	12.28	312	23.50	597	2.68	69	2.81	71	3.90	99
12	300	12.17	309	16.75	425	18.25	464	12.00	305	9.25	235	13.78	350	26.25	667	3.00	76	3.12	79	3.90	99

					Dimei	1sion	S						Flai	1ge/\$1	tud	Data				wei	ght	
;	Size		K		M		N		Р		Di	a.	W	afer		Lug	E	3C	Lu	g	Wat	fer
ln.	mm.	ln.	mm.	ln.	mm.	ln.	mm.	ln.	mm.	No.	In.	mm.	ln.	mm.	ln.	mm.	ln.	mm.	Lbs.	Kg.	Lbs.	Kg.
2	50	3.54	90	5.82	148	2.13	54	5.9	150	4	5⁄8	16					4.75	121	23	11	21	10
21/	ź 65	3.54	90	5.82	148	2.13	54	5.9	150	4	5/8	16		Dofo			5.50	140	25	11	24	11
3	80	3.54	90	5.82	148	2.13	54	5.9	150	4	5/8	16		Refe butte			6.00	152	26	12	24	11
4	100	3.54	90	5.82	148	2.13	54	5.9	150	8	5/8	16		val			7.50	191	31	14	27	12
5	125	3.54	90	7.64	194	2.13	54	5.9	150	8	3/4	20		techr		ı	8.50	216	37	17	31	14
6	150	3.54	90	7.64	194	2.13	54	5.9	150	8	3/4	20		inform		n	9.50	241	40	18	34	15
8	200	3.54	90	7.91	201	2.13	54	9.8	250	8	3/4	20		for t			11.75	298	55	25	49	22
10	250	3.98	101	9.49	241	3.03	77	11.8	300	12	7/8	22		leng	tns		14.25	362	95	43	78	35
12	300	3.98	101	9.49	241	3.03	77	11.8	300	12	7/8	22					17.00	432	123	56	103	47





LD-3510-8** Lug (Not Shown)

\A/-:---

(10" Shown)

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

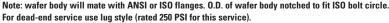
^{*}Weighted average lead content ≤ 0.25%

250 PSI WWP UL/FM Butterfly Valves

Designed for normally closed position monitoring

Fire Protection Valve • Lug or Wafer Style Body • Factory Mounted Monitoring Switches • Mates with C.I. Class 125 and Steel Class 150 Flanges

APPROVED CUL


250 PSI/17.2 bar non-shock cold water

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • UL/ULC LISTED** • FM APPROVED** • CERTIFIED LEAD FREE BY TRUESDAIL LABS 2½" - 8" UL LISTED FOR INDOOR AND OUTDOOR SERVICE

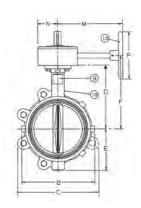
Warning: these valves are <u>not</u> to be used between the water source and sprinkler head.

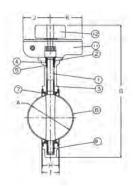
NЛ	ΛT	FR	IAI	111	ICT
IVI	41	ГK	ш		121

		MAIERIAL LIST
PART	•	SPECIFICATION
1.	Stem	Stainless Steel ASTM 582 Type 416
2.	Collar Bushing	Brass ASTM B16
3.	Upper Bushing	Copper Alloy CDA 122
4.	Stem Seal	EPDM
5.	Body Seal	EPDM
6.	Disc	Ductile Iron ASTM 395 (Nickel Plated)
7.	Liner	EPDM
8.	Lower Bushing	Copper Alloy CDA 122
9.	Nameplate	Aluminum
10.	Body	Ductile Iron ASTM A536
11.	Gear Operator	Cast Iron and Steel
12.	Indicator Flag	Cast Iron
13.	Handwheel	Cast Iron

Comes with two factory mounted internal supervisory switches. Use switch Figure No. TS-4. See page 4 of I & M manual for installation & wiring instructions

DIMENSIONS—WEIGHTS—QUANTITIES


										vime	nsioi	ns									
S	ize	I	١		В		;)		E		=		G		Н		1_		J
In.	mm.	ln.	mm.	ln.	mm.	ln.	mm.	ln.	mm.	ln.	mm.	In.	mm.	ln.	mm.	In.	mm.	In.	mm.	ln.	mm.
21/2	65	2.90	74	5.62	143	5.12	130	5.88	149	3.25	83	7.36	187	13.63	346	1.81	46	1.94	49	2.91	74
3	80	3.17	81	6.12	155	5.50	140	6.12	155	3.38	86	7.60	193	14.00	356	1.81	46	1.94	49	2.91	74
4	100	4.17	106	7.00	178	8.25	210	6.88	175	4.00	102	8.39	213	15.38	391	2.06	52	2.19	56	2.91	74
6	150	6.17	157	9.25	235	10.25	260	8.00	203	5.25	133	9.49	241	17.75	451	2.19	56	2.31	59	2.91	74
8	200	8.17	208	11.62	295	12.38	314	9.25	235	6.50	165	10.75	273	20.25	514	2.38	60	2.50	64	2.91	74


					Dimer	sion	S							Fla	nge/S	Stud	Data			Wei	ght
9	Size		K	ı	VI		V		P		Di	ia	Wa	fer	L	ug	В	С	Lu	g	Wafer
ln.	mm.	ln.	mm.	ln.	mm.	ln.	mm.	ln.	mm.	No.	In.	mm	. In.	mm.	In.	mm.	ln.	mm.	Lbs.	Kg.	Lbs. Kg.
21/2	65	3.54	90	5.82	148	2.13	54	5.9	150	4	5/8	16	4.25	108	1.50	38	5.50	140	25	11	24 11
3	80	3.54	90	5.82	148	2.13	54	5.9	150	4	5/8	16	4.25	108	1.50	38	6.00	152	26	12	24 11
4	100	3.54	90	5.82	148	2.13	54	5.9	150	8	5/8	16	5.00	127	2.00	51	7.50	191	31	14	27 12
6	150	3.54	90	7.64	194	2.13	54	5.9	150	8	3/4	20	5.25	133	2.00	51	9.50	241	40	18	34 15
8	200	3.54	90	7.91	201	2.13	54	9.8	250	8	3/4	20	5.75	146	2.25	57	11.75	298	55	25	49 22

^{**}Compliance with standards for butterfly valves for fire protection UL1091 & FM1112

LD-3510-C-8

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

285 PSI Butterfly Valves

Ductile Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner • Lug and Wafer Style (not intended for air lines)

Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges. 285 PSI Bi-directional dead end service with no need for a downstream flange.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • U.S. COAST GUARD "CATEGORY A" • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO NSF/ANSI 61 AND 372

MATERIAL LIST

	1417	11 21117 12 210 1
	PART	SPECIFICATION
1.	Stem	Stainless Steel ASTM A582 Type 416
2.	Collar Bushing	Stainless Steel ASTM A236 Type 316
3.	Stem Seal	EPDM Rubber
4.	Body Seal	EPDM Rubber
5.	Nameplate	Aluminum
6.	Upper Bushing	Stainless Steel ASTM A276 Type 316
7.	Liner	EPDM Rubber
8.	Disc	Stainless Steel ASTM 743 Grade CF8M
9.	Lower Bushing	Stainless Steel ASTM A276 Type 316
10.	Body Wafer	Ductile Iron ASTM A536
11.	Body Lug	Ductile Iron ASTM A536

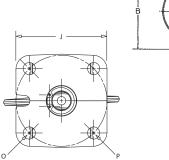
WD-5022
Wafer Style
EPDM Liner
and Stainless
Steel Disc

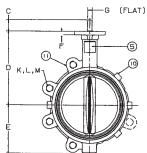
LD-5022 Lug Style EPDM Liner and Stainless Steel Disc

(II)

② ③

⑥ ⑦


(9)


NOT RECOMMENDED FOR STEAM SERVICE

DIMENSIONS — WEIGHTS

Si	ze							G	Metal	Rubber	J	N
ln.	mm.	Α	В	C	D	E	F	Flat	Н	- 1	Square	Dia.
2	50	2.53	4.00	1.25	5.38	2.88	.38	.312	1.688	1.812	3.25	.500
2 1/2	65	2.90	4.69	1.25	5.88	3.27	.38	.370	1.812	1.938	3.25	.562
3	80	3.15	5.12	1.25	6.12	3.40	.38	.370	1.812	1.938	3.25	.562
4	100	4.09	6.12	1.25	6.88	4.00	.38	.403	2.062	2.188	3.25	.625
5	125	5.13	7.25	1.25	7.38	4.75	.38	.496	2.188	2.312	3.25	.750
6	150	6.13	8.25	1.25	8.00	5.29	.38	.496	2.188	2.312	3.25	.750
8	200	8.13	10.41	1.25	9.25	6.50	.50	.560	2.375	2.500	3.25	.875
10	250	10.13	12.52	1.25	10.50	8.00	.50	.686	2.688	2.812	4.75	1.125
12	300	12.13	15.00	1.25	12.00	9.25	.50	.748	3.000	3.125	4.75	1.250

						Capsci	rew/Stud	Data				14/	- 4
Si	ze	0	Р	R	K	L	Wafer	Lug	M		ıg ight		afer ight
ln.	mm.	B.C.	Dia.	Dia.	No.	Dia.		Length	B.C.	Lbs.	Kg.	Lbs.	Kg.
2	50	3.25	.437	.437	4 5	5/8-11unc	;			7	3.2	5.5	2.5
2 1/2	65	3.25	.437	.500	4 5	5/8-11und	;			9	4.1	7.5	3.4
3	80	3.25	.437	.500	4 5	5/8-11und		Ref		9.5	4.3	8	3.6
4	100	3.25	.437	.562	8 5	5/8-11und	;	to B		15	6.8	11	5.0
5	125	3.25	.437	.656	8 3	3/4-10und	;	Techr		21	9.5	15	6.8
6	150	3.25	.437	.656	8 3	3/4-10und	:	for b		24	10.9	18	8.2
8	200	3.25	.437	.781	8 3	3/4-10und	;	leng	ths	34	15.4	28	12.7
_10	250	5.00	.562	1.000	12	7/8-9unc				62	28.1	45.5	20.7
_12	300	5.00	.562	1.062	12	7/8-9unc				90	40.9	70	31.8

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

^{*}Weighted average lead content ≤ 0.25%

Large Diameter Butterfly Valves

LD1000/2000 Series

Ductile Iron

Lug body

EPDM or Buna-N liner materials

- 14" thru 48" size range
- 150/200 PSI WOG
- Bubble tight shut off at full rated pressure
- Bidirectional dead end service Sizes 14"- 24" 150 psi Sizes 30" - 48" 100 psi
- Extended neck for 2" of insulation
- Aluminum bronze, 316SS, nickel plated ductile iron disc
- 416 stainless steel stem
- Designed to meet MSS SP-67 standard

150 PSI Butterfly Valves

Ductile Iron Body • Cartridge Liner • Lug Style

Sizes 14", 16", 18", 20", and 24"

Install between Std. ASME Class 125/150 flanges. 100 PSI bi-directional dead end service rating without a downstream flange. Do NOT install between AWWA C115/A21.5 type flanges.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • CERTIFIED LEAD -FREE* BY IAPMO R&T TO NSF/ANSI 372

MATERIAL LIST

		IVIAI EKIAL LIST
	PART	SPECIFICATION
1.	Screw	Steel, ANSI 1035 (2) 16" & 18" (4) 20" & 24"
2.	Bottom Plate	Ductile Iron ASTM A536 grade 65-45-12
3.	0-ring	Nitrile ASTM D2000
4.	Body	Ductile Iron ASTM A536 grade 65-45-12
5.	Long Bushing	Bronze ASTM B584 UNS C83600
6.	Stem	Stainless Steel ASTM A582 UNS S41600
		Stainless Steel ASTM A276 UNS S31600
7.	Disc	Aluminum bronze ASTM B148 UNS C95400
		Ductile Iron ASTM A536 grade 65-45-12 Nickel Plated
		Stainless Steel ASTM A351 CF8M
8.	Taper Pin (2)	Stainless Steel ASTM A564 UNS S17400
9.	Seat	Nitrile ASTM D2000
		EPDM ASTM D2000
10.	Nameplate	Aluminum
11.	Short Bushing (2)	Bronze ASTM B584 UNS C83600
12.	0-ring	Nitrile ASTM D2000
13.	Key	Steel, ASTM A108 UNS C10450
14.	Screw	Steel, ANSI 1035 (6) 14" thru 18" (8) 20" & 24"
15.	Retainer Plate	ASTM A570 GR33 Galvanized
16.	Bolts M6	ASTM A570 GR33 Galvanized

DIMENSIONS — WEIGHTS

S	Size		Minimum.	В	С				G	Н	<u>_</u> _
In.	mm	Dia.	Pipe I.D.	Dia.	Dia.	D	E	F	Body	Seat	Dia.
14"	350	13.12	13.02	14.77	17.20	14.49	1.77	26.77	3.00	3.13	1.244
16"	400	15.34	15.20	17.30	19.21	15.75	2.02	29.93	3.37	3.54	1.305
18"	450	17.34	17.09	19.31	21.22	16.61	2.02	31.54	4.12	4.29	1.494
20"	500	19.36	18.90	21.08	23.31	18.90	2.53	35.64	5.13	5.31	1.619
24"	600	23.33	23.05	25.71	32.09	22.13	2.76	42.96	5.96	6.14	1.993

DIMENSIONS — WEIGHTS

Si	ize	J	K	<u>L</u>	<u>M</u>	<u>P</u>	0	R	<u>T</u>	T WEIG	
In.	mm	Dia.	Dia.	Dia.	Drive Key		Dia.	Dia.	ln.	Lbs.	Kg
14"	350	5.51	4.25	0.55	.250 x 1.125 WOODRUFF #809	12	1"-8 UNC	18.75	17.52	141	64
16"	400	7.76	6.25	0.83	.312 X.312 X 1.811 LONG	16	1"-8 UNC	21.25	20.08	199	90
18"	450	7.76	6.25	0.83	.375 X .375 X 1.881 LONG	16	1-1/8"-7 UNC	22.75	21.26	261	119
20"	500	7.76	6.25	0.83	.375 x .375 x 1.811 LONG	20	1-1/8"-7 UNC	25.00	24.02	395	179
24"	600	10.87	8.50	0.94	.500 x .500 x 2.362 LONG	20	1-1/4"-7 UNC	29.50	27.87	591	268

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

LD-1000/LD-1100

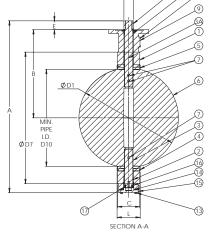
Lug Style EPDM or Buna-N Liner Aluminum Bronze Disc

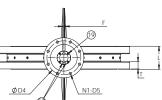
LD-1010/LD-1110

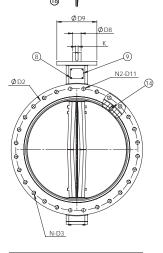
Lug Style EPDM or Buna-N Liner Ductile Iron Disc

LD-1022/LD-1122

Lug Style EPDM or Buna-N Liner Stainless Steel Disc







NSF/ANSI 372

NOT RECOMMENDED FOR STEAM SERVICE

*Weighted average lead content ≤ 0.25%

150 PSI Butterfly Valves

Ductile Iron Body • Cartridge Liner • Double Flanged

Sizes 30", 36", 42" and 48"

Install between ANSI B16.10 Class 125 or ANSI B16.47 Class 150 flanges. 100 PSI bi-directional dead end service rating without a downstream flange. Do NOT install between AWWA C115/A21.5 type flanges.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD

ΜΔΤΕΡΙΔΙ LIST

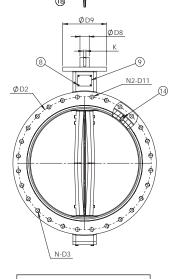
		MAI EKIAL LIST
	PART	SPECIFICATION
1.	Body	Ductile Iron ASTM A536
2.	Bushing	Bronze ASTM B584 Grade C83600
3.	Lower Stem	Stainless Steel ASTM A582 Type 416
		Stainless Steel ASTM A276 Type 316SS
За.	Upper Stem	Stainless Steel ASTM A582 Type 416
		Stainless Steel ASTM A276 Type 316SS
4.	Seat Back Ring	Phenolic Resin, Aluminum B26
		30" - 36" eight set screws in backing
		42" - 48" ten set screws in backing
5.	Seat	Rubber - BUNA (NBR)
		Rubber - EPDM
6.	Disc	Aluminum Bronze ASTM B148 C95400
		Ductile Iron ASTM A536 65-45-12 (Nickel Plated)
		Stainless Steel ASTM A351 Grade CF8M
7.	Taper Pin (3)	Stainless Steel ASTM A582 Type 416 or ASTM 564
8.	Rivet	Steel
9.	Nameplate	Aluminum
10.	Bushing	Bronze ASTM B584 C83600
11.	Flat Key	Steel ASTM A108 1045
12.	Bushing	Bronze ASTM B584 C83600
13.	Socket Bolt	Steel ASTM A307
14.	0-Ring	Rubber BUNA (NBR)
15.	Bottom Plate	Steel ASTM A108 1035
16.	Thrust Bearing	Bearing Steel
17.	Washer	Steel
18.	Retainer Plate	Steel Galvanized, ASTM A570 GR33
19.	Bolts M6	Steel Galvanized, ASTM A570 GR33
20.	0-Ring	Rubber Buna (NBR)

LD-1000/LD-1100

Lug Style EPDM or Buna-N Liner Aluminum Bronze Disc

LD-1010

Lug Style EPDM Liner Ductile Iron Disc


LD-1022

Lug Style EPDM Liner Stainless Steel Disc

	J	11) 12) 8
+		9
Ė		(3A) (1)
+		5
B ØD1		6
MIN. PIPE I.D.		3 4
ØD7 D10		2 16
<u> </u>		14
0	C	13
	SECTION A-A	
		(4)

NOT RECOMMENDED FOR STEAM SERVICE

Size		<u>D8</u>											
In.	mm.	D1	D2	D4	D5	D7	Dia.	D9	D10	D11	C		
30	750	29.30	36.00	10.00	0.71	38.74	2.50	11.81	28.56	1¼-7UNC	6.57		
36	900	34.04	42.75	10.00	0.71	46.00	2.95	11.81	33.09	1½-6UNC	8.00		
42	1050	40.55	49.50	11.73	0.87	53.00	3.74	13.78	39.33	1½-6UNC	9.88		
48	1200	45 67	56.00	11 73	በ 87	59 50	4 13	13 78	44 35	11/2-6LINC	10.88		

Si	ize										K	We	ight
ln.	mm.	L	Α	В	E	F	J	N1	N2	T	Key Size	Lbs.	Kg.
30	750	6.81	50.63	26.00	2.60	0.709	2.809	8	28	2.12	.709 x .433 x 2.50	926	420
36	900	8.31	58.82	28.35	4.65	0.787	3.307	8	32	2.38	.787 x .472 x 4.00	1482	660
42	1050	10.28	70.28	33.78	5.91	0.984	4.134	8	36	2.62	.984 x .551 x 4.50	1971	896
48	1200	11.26	76.96	37.04	5.91	1.102	4.606	8	44	2.75	1.104 x .630 x 4.50	2816	1280

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

200 PSI Butterfly Valves

Ductile Iron Body • Cartridge Liner • Lug Style

Sizes 14", 16", 18", 20", and 24"

Install between Std. ASME Class 125/150 flanges. Is 150 PSI bi-directional dead end service rating without a downstream flange. Do NOT install between AWWA C115/A21.5 type flanges.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67
STANDARD • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO
NSF/ANSI 372

MATERIAL LIST

		WAI EINAE EIOT
	PART	SPECIFICATION
1.	Screw	Steel, ANSI 1035 (2) 16" & 18" (4) 20" & 24"
2.	Bottom Plate	Ductile Iron ASTM A536 grade 65-45-12
3.	0-ring	Nitrile ASTM D2000
4.	Body	Ductile Iron ASTM a536 grade 65-45-12
5.	Long Bushing	Bronze ASTM B584 UNS C83600
6.	Stem	Stainless Steel ASTM A276 UNS S31600
7.	Disc	Alum. Bronze ASTM B148 Alloy 954/955
8.	Taper Pin (2)	Stainless Steel ASTM A564 UNS S17400
9.	Seat	Nitrile ASTM D2000
		EPDM ASTM D2000
10.	Nameplate	Aluminum
11.	Short Bushing (2)	Bronze ASTM B584 UNS C83600
12.	O-ring	Nitrile ASTM D2000
13.	Key	Steel, ASTM A108 UNS C10450
14.	Screw	Steel, ANSI 1035 (6) 14" thru 18" (8) 20" & 24"

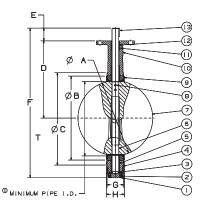
^{**}NOTE: 24" is not available with SS trim

DIMENSIONS — WEIGHTS

S	Size		Minimum.	В	<u>c</u>				G	<u>H</u>	
In.	mm	Dia.	Pipe I.D.	Dia.	Dia.	D	E	F	Body	Seat	Dia.
14"	350	13.12	13.02	14.77	17.20	14.49	1.77	26.77	3.00	3.13	1.244
16"	400	15.34	15.20	17.30	19.21	15.75	2.02	29.93	3.37	3.54	1.305
18"	450	17.34	17.09	19.31	21.22	16.61	2.02	31.54	4.12	4.29	1.494
20"	500	19.36	18.90	21.08	23.31	18.90	2.53	35.64	5.13	5.31	1.619
24"	600	23.33	23.05	25.71	32.09	22.13	2.76	42.96	5.96	6.14	1.993

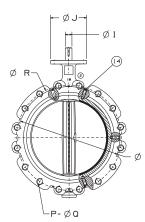
DIMENSIONS — WEIGHTS

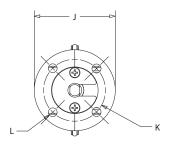
Si	ize	J	K	<u>L</u>	M	<u>P</u>	0	R	<u>T</u>	WEI	GHT
In.	mm	Dia.	Dia.	Dia.	Drive Key		Dia.	Dia.	ln.	Lbs.	Kg
14"	350	5.51	4.25	0.55	.250 x 1.125 WOODRUFF #809	12	1"-8 UNC	18.75	17.52	141	64
16"	400	7.76	6.25	0.83	.312 X.312 X 1.811 LONG	16	1"-8 UNC	21.25	20.08	199	90
18"	450	7.76	6.25	0.83	.375 X .375 X 1.881 LONG	16	1-1/8"-7 UNC	22.75	21.26	261	119
20"	500	7.76	6.25	0.83	.375 x .375 x 1.811 LONG	20	1-1/8"-7 UNC	25.00	24.02	395	179
24"	600	10.87	8.50	0.94	.500 x .500 x 2.362 LONG	20	1-1/4"-7 UNC	29.50	27.87	591	268


WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

LD-2000/LD-2100*

Lug Style EPDM or Buna-N Liner





14" Reference Lower Shaft Well

NOT RECOMMENDED FOR STEAM SERVICE

^{*}Weighted average lead content ≤ 0.25%

200 PSI Butterfly Valves

Ductile Iron Body • Cartridge Liner • Lug Style

Sizes 14", 16", 18", 20", and 24"

Install between Std. ASME Class 125/150 flanges. Is 150 PSI bi-directional dead end service rating without a downstream flange. Do NOT install between AWWA C115/A21.5 type flanges.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67
STANDARD • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO
NSF/ANSI 372

MATERIAL LIST

		, (: =::::, (= =:0 :
	PART	SPECIFICATION
1.	Screw	Steel, ANSI 1035 (2) 16" & 18" (4) 20" & 24"
2.	Bottom Plate	Ductile Iron ASTM A536 grade 65-45-12
3.	O-ring	Nitrile ASTM D2000
4.	Body	Ductile Iron ASTM a536 grade 65-45-12
5.	Long Bushing	Bronze ASTM B584 UNS C83600
6.	Stem	Stainless Steel ASTM A276 UNS S31600
7.	Disc	Ductile Iron ASTM A536 65-45-12 Nickel Plated
8.	Taper Pin (2)	Stainless Steel ASTM A564 UNS S17400
9.	Seat	Nitrile ASTM D2000
		EPDM ASTM D2000
10.	Nameplate	Aluminum
11.	Short Bushing (2)	Bronze ASTM B584 UNS C83600
12.	O-ring	Nitrile ASTM D2000
13.	Key	Steel, ASTM A108 UNS C10450
14.	Screw	Steel, ANSI 1035 (6) 14" thru 18" (8) 20" & 24"

^{**}NOTE: 24" is not available with SS trim

DIMENSIONS — WEIGHTS

Si	Size		Minimum.	В	<u>c</u>				G	<u>H</u>	
In.	mm	Dia.	Pipe I.D.	Dia.	Dia.	D	E	F	Body	Seat	Dia.
14"	350	13.12	13.02	14.77	17.20	14.49	1.77	26.77	3.00	3.13	1.244
16"	400	15.34	15.20	17.30	19.21	15.75	2.02	29.93	3.37	3.54	1.305
18"	450	17.34	17.09	19.31	21.22	16.61	2.02	31.54	4.12	4.29	1.494
20"	500	19.36	18.90	21.08	23.31	18.90	2.53	35.64	5.13	5.31	1.619
24"	600	23.33	23.05	25.71	32.09	22.13	2.76	42.96	5.96	6.14	1.993

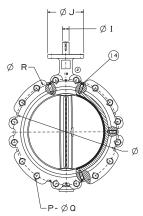
DIMENSIONS — WEIGHTS

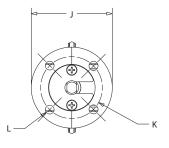
S	ize	J	K	L	<u>M</u>		0	R	<u>T</u>	WEI	GHT
In.	mm	Dia.	Dia.	Dia.	Drive Key		Dia.	Dia.	ln.	Lbs.	Kg
14"	350	5.51	4.25	0.55	.250 x 1.125 WOODRUFF #809	12	1"-8 UNC	18.75	17.52	141	64
16"	400	7.76	6.25	0.83	.312 X.312 X 1.811 LONG	16	1"-8 UNC	21.25	20.08	199	90
18"	450	7.76	6.25	0.83	.375 X .375 X 1.881 LONG	16	1-1/8"-7 UNC	22.75	21.26	261	119
20"	500	7.76	6.25	0.83	.375 x .375 x 1.811 LONG	20	1-1/8"-7 UNC	25.00	24.02	395	179
24"	600	10.87	8.50	0.94	.500 x .500 x 2.362 LONG	20	1-1/4"-7 UNC	29.50	27.87	591	268

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

LD-2010/LD-2110*

Lug Style EPDM or Buna-N Liner





14" Reference Lower Shaft Well

NOT RECOMMENDED FOR STEAM SERVICE

Cast Iron Butterfly Valves

WC/LC-2000 Series

• Cast Iron

Lug or wafer body

- EPDM liner materials
- 2" thru 12" size range
- 200 PSI CWP
- Bubble tight shut off at full rated pressure
- Aluminum bronze disc
- 416 stainless steel stem

N-200 Series

• Cast Iron

Lug or wafer body

- EPDM or Buna-N liner materials
- 2" thru 12" size range
- 200 PSI CWP
- Bubble tight shut off at full rated pressure
- Aluminum bronze, nickel plated ductile iron disc, or nylon coated ductile iron disc
- 416 stainless steel stem

Note - Stem extensions for this butterfly series are not available.

200 PSI Butterfly Valves

Cast Iron Body • Extended Neck • Geometric Drive • Molded-In Seat Liner • Lug and Wafer Style

Sizes 2" through 12"

Install between Std. ASME Class 125 flanges†. Lug Style 200 PSI bi-directional dead end service rating without a downstream flange required.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD • US COAST GUARD "CATEGORY A" • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO NSF/ANSI 61-8 COMMERCIAL HOT 180°F AND NSF/ANSI 61 AND 372

MATERIAL LIST

	PART	SPECIFICATION
1.	Stem	Stainless Steel ASTM A582 Type 416
2.	Collar Bushing	Brass ASTM B16
3.	Stem Seal	EPDM Rubber
4.	Body Seal	EPDM Rubber
5.	Nameplate	Aluminum
6.	Upper Bushing	Copper CDA 122
7.	Liner	EPDM Rubber
8.	Disc	Alum. Brz. ASTM B148 Alloy 955
9.	Lower Bushing	Copper CDA 122
10.	Body Wafer	Cast Iron
11.	Body Lug	Cast Iron

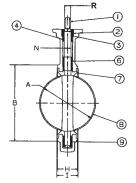
DIMENSIONS — WEIGHTS

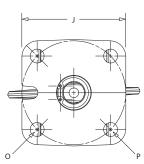
Size	_						G	Metal	Rubber	J	N
In. mn	1. A	В	C	D	E	F	Flat	Н	1	Square	Dia.
2 50	2.53	4.00	1.25	5.38	2.88	.38	.312	1.688	1.812	3.25	.500
2 1/2 65	2.90	4.69	1.25	5.88	3.27	.38	.370	1.812	1.938	3.25	.562
3 80	3.15	5.12	1.25	6.12	3.40	.38	.370	1.812	1.938	3.25	.562
4 10	0 4.09	6.12	1.25	6.88	4.00	.38	.403	2.062	2.188	3.25	.625
5 12	5 5.13	7.25	1.25	7.38	4.75	.38	.496	2.188	2.312	3.25	.750
6 15	0 6.13	8.25	1.25	8.00	5.29	.38	.496	2.188	2.312	3.25	.750
8 20	0 8.13	10.41	1.25	9.25	6.50	.50	.560	2.375	2.500	3.25	.875
10 25	0 10.13	12.52	1.25	10.50	8.00	.50	.686	2.688	2.812	4.75	1.125
12 30	0 12.13	15.00	1.25	12.00	9.25	.50	.748	3.000	3.125	4.75	1.250

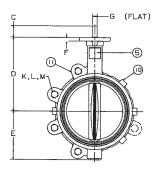
					Capscrew/Stud Data						Lug		W	afer	
Si	ze	0	<u>P</u>	R	K	L	L W		Lug	M	Weight			Weight	
ln.	mm.	B.C.	Dia.	Dia.	No.	Dia.	Lei	ngth l	<u>Length</u>	B.C.	Lbs.	Kg.	Lbs.	Kg.	
2	50	3.25	.437	.437	4 5	5/8-11unc)			4 3/4	7	3.2	5.5	2.5	
2 1/2	65	3.25	.437	.500	4 5	5/8-11unc)			5 1/2	9	4.1	7.5	3.4	
3	80	3.25	.437	.500	4 5	5/8-11unc)		er to	6	9.5	4.3	8	3.6	
4	100	3.25	.437	.562	8 5	5/8-11unc)		terfly dve	7 1/2	15	6.8	11	5.0	
5	125	3.25	.437	.656	8 3	3/4-10und		tech	nical	8 1/2	21	9.5	15	6.8	
6	150	3.25	.437	.656	8 3	3/4-10und)		nation bolt	9 1/2	24	10.9	18	8.2	
8	200	3.25	.437	.781	8 3	3/4-10und)		gths	11 3/4	34	15.4	28	12.7	
_10	250	5.00	.562	1.000	12	7/8-9unc				14 1/4	62	28.1	45.5	20.7	
12	300	5.00	.562	1.062	12	7/8-9unc				17	90	40.9	70	31.8	

[†]NOTE: lug style valves - extra care should be used when installing with raised face flanges. Overtightening can result in broken lugs.

Visit our website for the most current information.







EPDM Liner and Aluminum Bronze Disc

LC-2000 Lug Style **EPDM Liner** and Aluminum Bronze Disc

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

> NOT RECOMMENDED FOR STEAM SERVICE

200 PSI Butterfly Valves

Cast Iron Body • Extended Neck • Cartridge Seat Liner* • Lug Style

Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges[†]. Bi-directional dead end service rating without a downstream flange required: 2"-6" 200 PSI, 8" 150 PSI, 10"-12" 100 PSI.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD

	MAI ERIAL LIS I										
	PART	SPECIFICATION									
1.	Body	Cast Iron, Epoxy coated ASTM A126 CL.B									
2.	Body Bushing	Bronze ASTM B584 Grade C83600									
3.	Liner	EPDM Rubber w/Phenolic Backing									
		Buna-N Rubber Nitrile w/Phenolic Backing									
4.	Stem	Stainless Steel ASTM A582 Type 416									
5.	Disc	Alum. Brz. ASTM B148 Alloy C95400									
		Ductile Iron ASTM A536 Grade 65-45-12 (plated)									
6.	Taper Pin	Stainless Steel ASTM A582 Type 416									
	(2 pin 6" - 12")										
7.	Name Plate	Aluminum									
8.	Shaft Bushing	Bronze ASTM B584 Grade C83600									
9.	Stem Seal	Buna-N Rubber Nitrile									
10.	Retainer Plate	ASTM A570 GR33 Galvanized									
11.	Bolts M6	ASTM A570 GR33 Galvanized									

DIMENSIONS — WEIGHTS

•		ize mm.	Dia.	A Pipe I.D.	Min. Dia.	B Dia.	CD	E	F	G Body	H Seat	<u>I</u> Dia.
	2	50	2.08	1.38	3.00	3.94	6.34	1.26	10.75	1.655	1.81	0.496
	2 1/2	2 65	2.54	1.95	3.50	4.72	6.89	1.26	11.65	1.759	1.93	0.496
	3	80	3.10	2.66	4.09	5.00	7.13	1.26	12.12	1.780	1.93	0.496
	4	100	4.10	3.67	5.32	6.14	7.87	1.26	13.62	2.050	2.18	0.621
	5	125	4.85	4.48	6.26	7.48	8.39	1.26	14.65	2.140	2.31	0.745
	6	150	6.12	5.84	7.42	8.35	8.90	1.26	15.62	2.195	2.33	0.745
	8	200	7.97	7.85	9.38	10.55	10.24	1.77	18.88	2.385	2.52	0.870
	10	250	9.86	9.76	11.51	12.79	11.50	1.77	21.26	2.584	2.83	1.120
	12	300	11.87	11.72	13.55	15.87	13.27	1.77	24.57	3.029	3.19	1.244

Si	ze	J	K B.C.	L	M	R		Q	Т	Lug Weight
ln.	mm.	Dia.	Dia.	Dia.	Dia.	Dia	Р	Dia.	Flats	Lbs. Kg.
2	50	3.00	1.97	0.28	0.75	4.75	4	5/8-11UNC	.350	8.6 3.9
2 1/2	65	3.03	1.97	0.28	0.75	5.50	4	5/8-11UNC	.350	10.8 4.9
3	80	3.03	1.97	0.28	0.75	6.00	4	5/8-11UNC	.350	11.4 5.2
4	100	3.62	2.76	0.39	0.75	7.50	8	5/8-11UNC	.437	18.9 8.6
5	125	3.62	2.76	0.39	0.88	8.50	8	3/4-10UNC	.500	22.8 10.4
6	150	3.62	2.76	0.39	0.88	9.50	8	3/4-10UNC	.500	27.1 12.3
8	200	4.50	4.02	0.47	0.88	11.75	8	3/4-10UNC	.625	41.2 18.7
10	250	4.50	4.02	0.47	1.00	14.25	12	7/8-9UNC	.812	56.3 25.9
12	300	5.50	4.02	0.47	1.00	17.00	12	7/8-9UNC	.875	90.3 41.0

^{*} Note: refer to NIBCO 0 & M manual for specified installation instructions for optimal performance of cartridge seat valves

N-200235

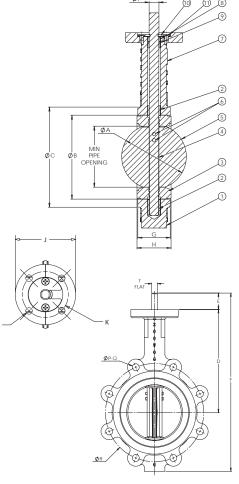
Lug Style EPDM Liner Aluminum Bronze Disc

N-200236

Lug Style **EPDM** Liner Ductile Iron Disc

N-200245

Lug Style Buna Liner Aluminum Bronze Disc


N-200246

Lug Style Buna Liner Ductile Iron Disc

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

> NOT RECOMMENDED FOR STEAM SERVICE

[†] Note: lug style valves- extra care should be used when installing with raised face flanges. Over-tightening can result in broken lugs.

200 PSI Butterfly Valves

Cast Iron Body • Extended Neck • Cartridge Seat Liner* • Wafer Style

Sizes 2" through 12"

Install between Std. ASME Class 125 flanges.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD

MATERIAL LIST

PART	SPECIFICATION
Body	Cast Iron, Epoxy coated ASTM A126 CL.B
Body Bushing	Bronze ASTM B584 Grade C83600
Liner	EPDM Rubber w/Phenolic Backing
	Buna-N Rubber Nitrile w/Phenolic Backing
Stem	Stainless Steel ASTM A582 Type 416
Disc	Alum. Brz. ASTM B148 Alloy C95400
	Ductile Iron ASTM A536 Grade 65-45-12 (plated)
Taper Pin	Stainless Steel ASTM A582 Type 416
(2 pin 6" - 12")	
Name Plate	Aluminum
Shaft Bushing	Bronze ASTM B584 Grade C83600
Stem Seal	Buna-N Rubber Nitrile
Retainer Plate	ASTM A570 GR33 Galvanized
Bolts M6	ASTM A570 GR33 Galvanized
	Body Body Bushing Liner Stem Disc Taper Pin (2 pin 6" - 12") Name Plate Shaft Bushing Stem Seal Retainer Plate

DIMENSIONS — WEIGHTS

_	ize mm.	Dia.	A Pipe I.D	Min. Dia.	B Dia.	CD	Е	F	G Body	H Seat	l Dia.
2	50	2.08	1.38	3.00	3.94	6.34	1.26	10.75	1.655	1.81	0.496
2 1/2	65	2.54	1.95	3.50	4.72	6.89	1.26	11.65	1.759	1.93	0.496
3	80	3.10	2.66	4.09	5.00	7.13	1.26	12.12	1.780	1.93	0.496
4	100	4.10	3.67	5.32	6.14	7.87	1.26	13.62	2.050	2.18	0.621
5	125	4.85	4.48	6.26	7.48	8.39	1.26	14.65	2.140	2.31	0.745
6	150	6.12	5.84	7.42	8.35	8.90	1.26	15.62	2.195	2.33	0.745
8	200	7.97	7.85	9.38	10.55	10.24	1.77	18.90	2.385	2.52	0.870
10	250	9.86	9.76	11.51	12.79	11.50	1.77	21.26	2.584	2.83	1.120
12	300	11 87	11 72	13 55	15 87	13 27	1 77	24 57	3 029	3 19	1 244

Si	ze	J	B.C.	L	М	R		<u>a</u> <u>T</u>		Lug Weight
ln.	mm.	Dia.	Dia.	Dia.	Dia.	Dia	Р	Dia.	Flats	Lbs. Kg.
2	50	3.00	2.25	0.28	0.75	4.75	4	5/8-11UNC	.350	5.7 2.6
2 1/2	65	3.03	2.25	0.28	0.75	5.50	4	5/8-11UNC	.350	7.5 3.9
3	80	3.03	2.25	0.28	0.75	6.00	4	5/8-11UNC	.350	8.4 3.8
4	100	3.62	2.75	0.39	0.75	7.50	8	5/8-11UNC	.437	12.3 5.6
5	125	3.62	2.75	0.39	0.88	8.50	8	3/4-10UNC	.500	17.2 7.8
6	150	3.62	2.75	0.39	0.88	9.50	8	3/4-10UNC	.500	19.6 8.9
8	200	4.50	3.50	0.47	0.88	11.75	8	3/4-10UNC	.625	29.7 13.5
10	250	4.50	3.50	0.47	1.00	14.25	12	7/8-9UNC	.812	44.0 20.0
12	300	5.50	4.25	0.47	1.00	17.00	12	7/8-9UNC	.875	65.8 29.9

*Note: refer to NIBCO 0 & M manual for specified installation instructions for optimal performance of cartridge seat valves

N-200135

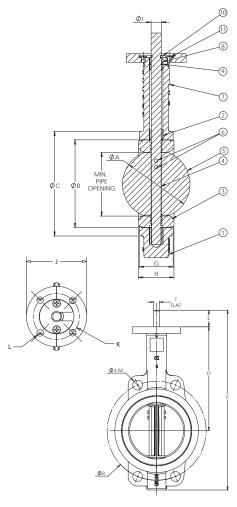
Wafer Style EPDM Liner Aluminum Bronze Disc

N-200136

Wafer Style EPDM Liner Ductile Iron Disc

N-200145

Wafer Style Buna Liner Aluminum Bronze Disc


N-200146

Wafer Style Buna Liner Ductile Iron Disc

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

NOT RECOMMENDED FOR STEAM SERVICE

200 PSI Butterfly Valves

Cast Iron Body • Extended Neck • Cartridge Seat Liner* • Lug Style

Sizes 2" through 12"

Install between Std. ASME Class 125 flanges[†]. Bi-directional dead end service rating without a downstream flange required: 2"-6" 200 PSI, 8" 150 PSI, 10"-12" 100 PSI.

THIRD PARTY CERTIFIED BY QAI TO MEET MSS SP-67 STANDARD

MATERIAI LIST

	IVIAI ENIAL LIGI										
PART	SPECIFICATION										
1. Body	Cast Iron, Epoxy coated ASTM A126 CL.B										
2. Body Bushing	Bronze ASTM B584 Grade C83600										
3. Liner	EPDM Rubber w/Phenolic Backing										
	Buna-N Rubber Nitrile w/Phenolic Backing										
4. Stem	Stainless Steel ASTM A582 Type 416										
5. Disc	Ductile Iron ASTM A536 Grade 65-45-12										
	(nylon bonded)										
6. Taper Pin	Stainless Steel ASTM A582 Type 416										
(2 pin 6" - 12")											
7. Name Plate	Aluminum										
8. Shaft Bushing	Bronze ASTM B584 Grade C83600										
9. Stem Seal	Buna-N Rubber Nitrile										

DIMENSIONS — WEIGHTS

									_		
S	ize		Α	Min.	В	С			G	Н	
ln.	mm.	Dia.	Pipe I.D.	Dia.	Dia.	D	E	F	Body	Seat	Dia.
2	50	2.08	1.38	3.00	3.94	6.34	1.26	10.75	1.655	1.81	0.496
2 1/	2 65	2.54	1.95	3.50	4.72	6.89	1.26	11.65	1.759	1.93	0.496
3	80	3.10	2.66	4.09	5.00	7.13	1.26	12.12	1.780	1.93	0.496
4	100	4.10	3.67	5.32	6.14	7.87	1.26	13.62	2.050	2.18	0.621
5	125	4.85	4.48	6.26	7.48	8.39	1.26	14.65	2.140	2.31	0.745
6	150	6.12	5.84	7.42	8.35	8.90	1.26	15.62	2.195	2.33	0.745
8	200	7.97	7.85	9.38	10.55	10.24	1.77	18.88	2.385	2.52	0.870
10	250	9.86	9.76	11.51	12.79	11.50	1.77	21.26	2.584	2.83	1.120
12	300	11.87	11.72	13.55	15.87	13.27	1.77	24.57	3.029	3.19	1.244

Si	ze	J	K B.C.	<u>L</u>	М	<u>R</u>		<u>a</u>	<u>T</u>	Lug Weight
ln.	mm.	Dia.	Dia.	Dia.	Dia.	Dia	Р	Dia.	Flats	Lbs. Kg.
2	50	3.00	1.97	0.28	0.75	4.75	4	5/8-11UNC	.350	8.6 3.9
2 1/2	65	3.03	1.97	0.28	0.75	5.50	4	5/8-11UNC	.350	10.8 4.9
3	80	3.03	1.97	0.28	0.75	6.00	4	5/8-11UNC	.350	11.4 5.2
4	100	3.62	2.76	0.39	0.75	7.50	8	5/8-11UNC	.437	18.9 8.6
5	125	3.62	2.76	0.39	0.88	8.50	8	3/4-10UNC	.500	22.8 10.4
6	150	3.62	2.76	0.39	0.88	9.50	8	3/4-10UNC	.500	27.1 12.3
8	200	4.50	4.02	0.47	0.88	11.75	8	3/4-10UNC	.625	41.2 18.7
10	250	4.50	4.02	0.47	1.00	14.25	12	7/8-9UNC	.812	56.3 25.9
12	300	5.50	4.02	0.47	1.00	17.00	12	7/8-9UNC	.875	90.3 41.0

^{*}Note: refer to NIBCO 0 & M manual for specified installation instructions for optimal performance of cartridge seat valves

†Note: lug style valves- extra care should be used when installing with raised face flanges. Över-tightening can result in broken lugs.

N-200238

Lug Style EPDM Liner Nylon Bonded DI Disc

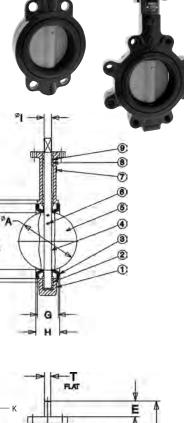
N-200138

Wafer Style **EPDM** Liner Nylon Bonded DI Disc

N-200248

Lug Style Buna-N Liner Nylon Bonded DI Disc

N-200148


Wafer Style Buna-N Liner Nylon Bonded DI Disc

NSF/ANSI 372

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

> NOT RECOMMENDED FOR STEAM SERVICE

150 PSI Butterfly Valves

Cast Iron Body • Extended Neck • Cartridge Seat Liner* • Lug Style

Sizes 14" through 24"

9. Stem Seal

Install between Std. ASME Class 125 flanges[†]. Bi-directional dead end service rating without a downstream flange required: 2"-6" 200 PSI, 8" 150 PSI, 10"-12" 100 PSI.

THIRD PARTY CERTIFIED BY OAI TO MEET MSS SP-67 STANDARD

MATERIAL LIST PART SPECIFICATION 1. Body Cast Iron, Epoxy coated ASTM A126 CL.B 2. Body Bushing Bronze ASTM B584 Grade C83600 EPDM Rubber w/Phenolic Backing 3. Liner Buna-N Rubber Nitrile w/Phenolic Backing Stainless Steel ASTM A582 Type 416 Stem Ductile Iron ASTM A536 Grade 65-45-12 5. Disc (nylon bonded DI) 6. Taper Pin Stainless Steel ASTM A582 Type 416 (2 pin 6" - 12") 7. Name Plate Aluminum Bronze ASTM B584 Grade C83600 8. Shaft Bushing

DIMENSIONS — WEIGHTS

Buna-N Rubber Nitrile

Size		Α	Minimum.	В	С				G	Н	1	
In.	mm	Dia.	Pipe I.D.	Dia.	Dia.	D	E	F	Body	Seat	Dia.	
14"	350	13.12	13.02	14.77	17.20	14.49	1.77	26.77	3.00	3.13	1.244	
16"	400	15.34	15.20	17.30	19.21	15.75	2.02	29.93	3.37	3.54	1.305	
18"	450	17.34	17.09	19.31	21.22	16.61	2.02	31.54	4.12	4.29	1.494	
20"	500	19.36	18.90	21.08	23.31	18.90	2.53	35.64	5.13	5.31	1.619	
24"	600	23.33	23.05	25.71	32.09	22.13	2.76	42.96	5.96	6.14	1.993	

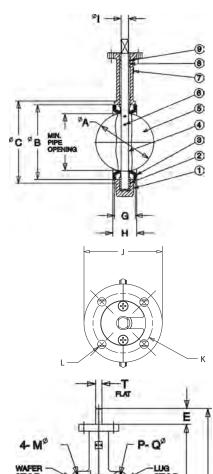
DIMENSIONS — WEIGHTS

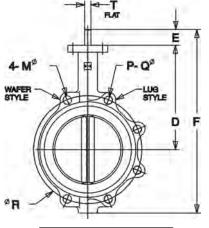
Size		<u>J K L</u>			<u>M</u>	<u>P</u>	0	R	<u>T</u>	WEI	GHT
In.	mm	Dia.	Dia.	Dia.	Drive Key		Dia.	Dia.	ln.	Lbs.	Kg
14"	350	5.51	4.25	0.55	.250 x 1.125 WOODRUFF #809	12	1"-8 UNC	18.75	17.52	141	64_
16"	400	7.76	6.25	0.83	.312 X.312 X 1.811 LONG		1"-8 UNC	21.25	20.08	199	90
18"	450	7.76	6.25	0.83	.375 X .375 X 1.881 LONG	16	1-1/8"-7 UNC	22.75	21.26	261	119
20"	500	7.76	6.25	0.83	.375 x .375 x 1.811 LONG	20	1-1/8"-7 UNC	25.00	24.02	395	179
24"	600	10.87	8.50	0.94	.500 x .500 x 2.362 LONG	20	1-1/4"-7 UNC	29.50	27.87	591	268

*Note: refer to NIBCO 0 & M manual for specified installation instructions for optimal performance of cartridge seat valves

[†]Note: lug style valves- extra care should be used when installing with raised face flanges. Over-tightening can result in broken lugs.

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.


N-150238


Lug Style EPDM Liner Nylon Bonded DI Disc

N-150248

Lug Style Buna-N Liner Nylon Bonded DI Disc

NOT RECOMMENDED FOR STEAM SERVICE

Grooved Butterfly Valve

GD-4765 Series GD-4865 Series

Polyamide Coated Ductile Iron body

Elastomer encapsulated disc (EPDM or Buna-N)

- Maximum temperature rating 200°F EPDM Disc and 180°F with Buna Disc
- 416 stainless steel stem
- 300 PSI WOG 2" thru 10"
- 200 PSI WOG 12"
- 175 PSI WOG 10" UL/FM
- UL & ULC listed, FM approved
- 2½" thru 10" UL listed for indoor and outdoor service
- UL/FM version accepts internal supervisory switches
- Designed to meet MSS SP-67 standard
- End connection per AWWA C606

300 PSI Grooved End Butterfly Valves

Polyamide Coated Ductile Iron Body • Extended Neck • Elastomer Encapsulated Disc • Grooved Mechanical Style • 12" Maximum Pressure Rating 200 PSI • Maximum Temperature Rating of 200°F EPDM Disc and 180°F Buna Disc • Grooved End Compatible with IPS pipe

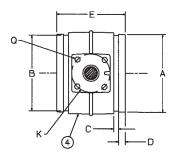
Sizes 2" through 12"

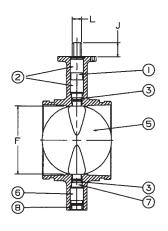
GD-4765 w/EPDM Liner

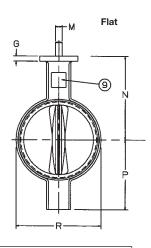
GD-4775 w/Buna-N Liner

DESIGNED TO MEET MSS SP-67 STANDARD

	MATERIAL LIST
PART	SPECIFICATION
1. Upper Stem	Stainless Steel ASTM A582 Type 416
2. Upper Bearing	Split Metal
3. O-Ring	EPDM or Buna-N
4. Body	Ductile Iron ASTM A395 w/Polyamide Coating
5. Disc	Ductile Iron ASTM A395 w/EPDM or
	Buna-N Encapsulation
6. Lower Bearing	Split Metal
7. Lower Stem	Stainless Steel ASTM A582 Type 416
8. Dust Plug	PVC
9. Name Plate	Aluminum


Polyamide coating has NSF certification


DIMENSIONS — WEIGHTS


Siz	ze								
ln.	mm.	Α	В	C	D	E	F	G	J
21/2	65	2.88	2.72	.31	.63	3.85	2.42	.46	1.22
3	80	3.50	3.34	.31	.63	3.85	2.86	.46	1.18
3 O.D.	76.1	3.00	2.84	.31	.63	3.85	2.42	.46	1.22
4	100	4.50	4.33	.38	.63	4.56	3.84	.46	1.24
5	125	5.56	5.39	.38	.63	5.86	4.79	.46	1.24
6	150	6.63	6.45	.38	.63	5.86	5.73	.46	1.29
6½ 0.D.	165.1	6.51	6.32	.38	.63	5.86	5.73	.46	1.29
8	200	8.63	8.44	.44	.75	5.26	7.71	.46	1.32
10 250		10.75	10.56	.50	.75	6.29	9.56	.70	1.38

Siz	e								We	eight
In.	mm.	K	L	M	N	Р	Q	R	Lbs.	Kg.
21/2	65	3.25	.50	.37	4.19	3.25	.437	3.46	7.5	3.4
3	80	3.25	.50	.37	4.44	3.54	.437	3.97	8.7	3.9
3 O.D.	76.1	3.25	.50	.37	4.19	3.25	.437	3.46	8.7	3.9
4	100	3.25	.66	.50	5.33	4.35	.437	5.03	12.2	5.5
5	125	3.25	.66	.50	5.83	4.84	.437	6.27	17.3	7.8
6	150	3.25	.78	.56	7.11	5.93	.437	7.25	27.4	12.4
6½ 0.D.	165.1	3.25	.78	.56	7.11	5.93	.437	7.25	27.4	12.4
8	200	3.25	.78	.56	8.05	6.87	.437	9.25	32.5	14.7
10 250		5.00	1.06	.75	9.86	9.17	.562	11.25	69.6	31.6

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

NOT RECOMMENDED FOR STEAM SERVICE

300 PSI Grooved End Butterfly Valves

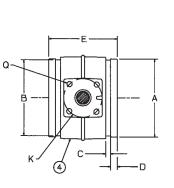
Polyamide Coated Ductile Iron Body • Extended Neck • Elastomer Encapsulated Disc • Grooved Mechanical Style • 12" Maximum Pressure Rating 200 PSI • Maximum Temperature Rating of 200°F ● Grooved End Compatible with IPS Pipe

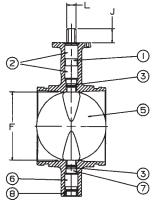
Sizes 2" through 10"

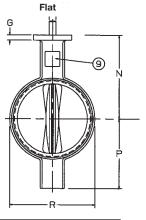
DESIGNED TO MEET MSS SP-67 STANDARD • NSF/ANSI 61-8 COMMERCIAL HOT 180°F (INCLUDES ANNEX F AND G) AND NSF/ANSI-372 • CERTIFIED LEAD-FREE* BY TRUESDAIL LABS TO NSF/ANSI 61 AND 372

MATERIAL LIST

PART	SPECIFICATION
Upper Stem	Stainless Steel ASTM A582 Type 416
Upper Bearing	Split Metal
O-Ring	EPDM
Body	Ductile Iron ASTM A395 w/Polyamide Coating
Disc	Ductile Iron ASTM A395 w/EPDM
Lower Bearing	Split Metal
Lower Stem	Stainless Steel ASTM A582 Type 416
Dust Plug	PVC
Name Plate	Aluminum
	Upper Stem Upper Bearing O-Ring Body Disc Lower Bearing Lower Stem Dust Plug


GD-4765-N w/EPDM Liner


DIMENSIONS — WEIGHTS


Si	ze								
In.	mm.	Α	В	С	D	E	F	G	J
2	2 50		2.32	.33	.63	3.33	2.42	.46	1.31
2½	65	2.88	2.72	.31	.63	3.85	2.42	.46	1.22
3	80	3.50	3.34	.31	.63	3.85	2.86	.46	1.18
3 O.D.	76.1	3.00	2.84	.31	.63	3.85	2.42	.46	1.22
4	100	4.50	4.33	.38	.63	4.56	3.84	.46	1.24
5	125	5.56	5.39	.38	.63	5.86	4.79	.46	1.24
6	150	6.63	6.45	.38	.63	5.86	5.73	.46	1.29
6½ O.D	. 165.1	6.51	6.32	.38	.63	5.86	5.73	.46	1.29
8	200	8.63	8.44	.44	.75	5.26	7.71	.46	1.32
10 250		10.75	10.56	.50	.75	6.29	9.56	.70	1.38

Size	е								We	eight
In.	mm.	K	L	M	N	Р	Q	R	Lbs.	Kg.
2	50	3.25	.50	.37	4.00	3.14	.437	2.89	6.7	3.0
2½	65	3.25	.50	.37	4.19	3.25	.437	3.46	7.5	3.4
3	80	3.25	.50	.37	4.44	3.54	.437	3.97	8.7	3.9
3 O.D.	76.1	3.25	.50	.37	4.19	3.25	.437	3.46	8.7	3.9
4	100	3.25	.66	.50	5.33	4.35	.437	5.03	12.2	5.5
5	125	3.25	.66	.50	5.83	4.84	.437	6.27	17.3	7.8
6	150	3.25	.78	.56	7.11	5.93	.437	7.25	27.4	12.4
6½ O.D.	165.1	3.25	.78	.56	7.11	5.93	.437	7.25	27.4	12.4
8	200	3.25	.78	.56	8.05	6.87	.437	9.25	32.5	14.7
10	250	5.00	1.06	.75	9.86	9.17	.562	11.25	69.6	31.6

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

NOT RECOMMENDED FOR STEAM SERVICE

300 PSI WWP UL/FM Butterfly Valves

Designed for normally open position monitoring

Fire Protection Valve • Grooved Mechanical Style • Nylon Coated Ductile Iron Body • Extended Neck • Elastomer Encapsulated Disc • Accepts Internal Supervisory Switches • Compatible with IPS Pipe[†]

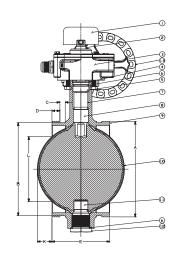
300 PSI/20.7 Bar Non-Shock Cold Water

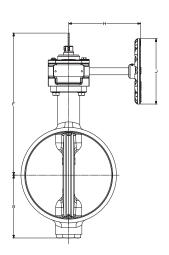
UL/ULC LISTED** • UL/FM LISTED FOR INDOOR AND OUTDOOR SERVICE • THIRD PARTY CERTIFIED TO NSF/ANSI 61 AND 372 • END CONNECTION PER AWWA C606

MATERIAL LIST

	PART	SPECIFICATION
1	Indicator Flag	Painted Steel
2	Stem Adapter	Steel
3	Gear Operator	Cast Iron and Steel
4	Retaining Ring	Carbon Steel
5	Cartridge Seal	Brass ASTM C36000
6	Stem Seals	EPDM
7	Upper Stem	Stainless Steel ASTM A582 Type 416
8	Upper Bushing	Plated Steel with PTFE Lining
9	Body	Ductile Iron ASTM A395 with Polyaminde Coating
10	Disc	Ductile Iron ASTM A536 with EPDM Encapsulation
11	Lower Bushing	Steel with PTFE Lining
12	Lower Stem	Stainless Steel ASTM A582 Type 416
13	Handwheel	Cast Iron

Factory mounted with two internal supervisory switches. Uses NIBCO model T1446762 PP switch. Ground post (-GP) and wall post (-WP) available. Normally open monitored only.





GD-4865-4N (not shown) No Switches

GD-4865-8N Grooved 2⋈⊠", 3", 4", 6", 8", 10"

DIMENSIONS—WEIGHTS

		Dimensions																							
SIZE			Α		В		С		D	Е		F			G		Н		J		(L		Weight	
In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	Lbs.	Kg.
2½"	65	2.88	73	2.72	69	0.31	8	0.63	16	3.81	97	8.95	227	2.20	56	4.92	125	4.25	108	_	_	_	_	9.5	4.3
3 OD	76.1	3.00	76.1	2.85	72	0.31	8	0.63	16	3.81	97	9.16	233	2.47	63	4.92	125	4.25	108	_	_	_	_	11.3	5.2
3	80	3.50	80.0	3.34	85	0.31	8	0.63	16	3.81	97	9.16	233	2.47	63	4.92	125	4.25	108	_		_	_	11.6	5.3
4	100	4.50	114.3	4.33	110	0.38	10	0.63	16	4.56	116	10.00	254	3.00	76	4.92	125	4.25	108	_	_	_	_	15.0	6.8
6 OD	165.1	6.50	165.1	6.33	161	0.38	10	0.63	16	5.81	148	11.92	303	4.33	110	6.48	165	6	152	—	_	_	_	31.5	14.3
6	150	6.63	168.3	6.45	164	0.38	10	0.63	16	5.81	148	11.92	303	4.33	110	6.48	165	6	152	—		_	_	31.3	14.2
8	200	8.63	219	8.44	214	0.44	11	0.75	19	5.25	133	12.85	326	5.67	114	6.48	165	6	152	1.32	34	5.87	149	43.0	19.5
10	250	10.77	250	10.55	268	0.50	13	0.75	19	6.25	159	15	381	6.77	172	8.74	222	6	152	1.74	44	7.44	189	77.0	35

^{**} Compliance with the Standard for Butterfly Valves for Fire Protection Service, UL 1091, and Indicating Valves, FM Class Number 1112.

[†] See Grooved Pipe Specification section

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Visit our website for the most current information.

300 PSI WWP UL/FM Butterfly Valves

Designed for normally closed position monitoring

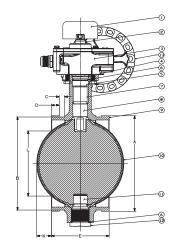
Fire Protection Valve • Grooved Mechanical Style • Nylon Coated Ductile Iron Body • Extended Neck • Elastomer Encapsulated Disc • Factory Installed Internal Monitoring Switches • Compatible with IPS Pipe[†]

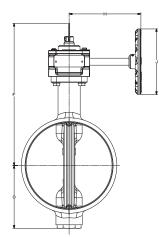
300 PSI/20.7 Bar Non-Shock Cold Water 21/2" - 10"

Warning: These valves are <u>not</u> to be used between the water source and sprinkler head.

UL/ULC LISTED** ◆ 2½" -10" LISTED FOR INDOOR AND OUTDOOR SERVICE ◆ THIRD PARTY CERTIFIED TO NSF/ANSI 61 AND 372 ◆ END CONNECTION PER AWWA C606

MATERIAL LIST


	PART	SPECIFICATION
1	Indicator Flag	Painted Steel
2	Stem Adapter	Steel
3	Gear Operator	Cast Iron and Steel
4	Retaining Ring	Carbon Steel
5	Cartridge Seal	Brass ASTM C36000
6	Stem Seals	EPDM
7	Upper Stem	Stainless Steel ASTM A582 Type 416
8	Upper Bushing	Plated Steel with PTFE Lining
9	Body	Ductile Iron ASTM A395 with Polyaminde Coating
10	Disc	Ductile Iron ASTM A536 with EPDM Encapsulation
11	Lower Bushing	Steel with PTFE Lining
12	Lower Stem	Stainless Steel ASTM A582 Type 416
13	Handwheel	Cast Iron


Note: Comes with two factory mounted internal supervisory switches. Uses NIBCO model T1447532 PP switch. See I & M manual for installation and wiring instructions.

Ground post or wall post not available. Normally closed monitored.

GD-4865-C-8N 28/8", 3", 4", 6", 8", 10"

DIMENSIONS—WEIGHTS

								D	imens	sions															
S	IZE		A		В		;		D		E				G		Η	,	J		K		L	Wei	ight
In.	mm.	In.	mm.	ln.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	Lbs.	Kg.
2½"	65	2.88	73	2.72	69	0.31	8	0.63	16	3.81	97	8.95	227	2.20	56	4.92	125	4.25	108	_	_	_	_	9.5	4.3
3 OD	76.1	3.00	76.1	2.85	72	0.31	8	0.63	16	3.81	97	9.16	233	2.47	63	4.92	125	4.25	108	_	_	_	_	11.3	5.2
3	80	3.50	80.0	3.34	85	0.31	8	0.63	16	3.81	97	9.16	233	2.47	63	4.92	125	4.25	108	_	_	_	_	11.6	5.3
4	100	4.50	114.3	4.33	110	0.38	10	0.63	16	4.56	116	10.00	254	3.00	76	4.92	125	4.25	108		_	_	_	15.0	6.8
6 OD	165.1	6.50	165.1	6.33	161	0.38	10	0.63	16	5.81	148	11.92	303	4.33	110	6.48	165	6	152		_	_	_	31.5	14.3
6	150	6.63	168.3	6.45	164	0.38	10	0.63	16	5.81	148	11.92	303	4.33	110	6.48	165	6	152	_	_	_	_	31.3	14.2
8	200	8.63	219	8.44	214	0.44	11	0.75	19	5.25	133	12.85	326	5.67	114	6.48	165	6	152	1.32	34	5.87	149	43.0	19.5
10	250	10.77	250	10.55	268	0.50	13	0.75	19	6.25	159	15	381	6.77	172	8.74	222	6	152	1.74	44	7.44	189	77.0	35

^{**} Compliance with the Standard for Butterfly Valves for Fire Protection Service, UL 1091 and Indicating Valves, FM Class Number 1112.

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

*Weighted average lead content ≤ 0.25%

[†] See Grooved Pipe Specification section

350 PSI WWP UL/FM Butterfly Valves

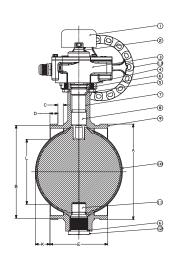
Designed for normally open position monitoring

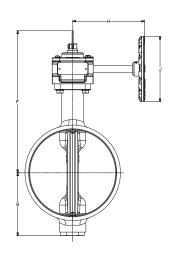
Fire Protection Valve • Grooved Mechanical Style • Nylon Coated Ductile Iron Body • Extended Neck • Elastomer Encapsulated Disc • Internal Supervisory Switches • Compatible with IPS Pipe†

350 PSI/24 Bar Non-Shock Cold Water 21/2" - 10"

UL/ULC LISTED** ● UL/FM LISTED FOR INDOOR AND OUTDOOR SERVICE ● THIRD PARTY CERTIFIED TO NSF/ANSI 61 AND 372 ● END CONNECTION PER AWWA C606

MATERIAL LIST


IVI/	II LIIIAL LIJ I
PART	SPECIFICATION
Indicator Flag	Painted Steel
Stem Adapter	Steel
Gear Operator	Cast Iron and Steel
Retaining Ring	Carbon Steel
Cartridge Seal	Brass ASTM C36000
Stem Seals	EPDM
Upper Stem	Stainless Steel ASTM A582 Type 416
Upper Bushing	Steel with PTFE Lining
Body	Ductile Iron ASTM A395 with Polyaminde Coating
Disc	Ductile Iron ASTM A536 with EPDM Encapsulation
Lower Bushing	Steel with PTFE Lining
Lower Stem	Stainless Steel ASTM A582 Type 416
Handwheel	Cast Iron
	PART Indicator Flag Stem Adapter Gear Operator Retaining Ring Cartridge Seal Stem Seals Upper Stem Upper Bushing Body Disc Lower Bushing Lower Stem


Factory mounted with two internal supervisory switches.
Uses NIBCO model T1446762 PP switch.
Ground post (-GP) and wall post (-WP) available. Normally open monitored only.

GD-6865-4N (not shown) No Switches

GD-6865-8N Grooved 2⊠⊠", 3", 4", 6", 8", 10"

DIMENSIONS—WEIGHTS

								D	imens	sions															
S	IZE		A	E	3	(;		D		E	F	F		G	H	1		J	I	(L	Wei	ight
In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	ln.	mm.	In.	mm.	In.	mm.	ln.	mm.	ln.	mm.	Lbs.	Kg.
2½"	65	2.88	73	2.72	69	0.31	8	0.63	16	3.81	97	8.95	227	2.20	56	4.92	125	4.25	108	_	_	_	_	9.5	4.3
3 OD	76.1	3.00	76.1	2.85	72	0.31	8	0.63	16	3.81	97	9.16	233	2.47	63	4.92	125	4.25	108	_	_	_	_	11.3	5.2
3	80	3.50	80.0	3.34	85	0.31	8	0.63	16	3.81	97	9.16	233	2.47	63	4.92	125	4.25	108	_	_	_		11.6	5.3
4	100	4.50	114.3	4.33	110	0.38	10	0.63	16	4.56	116	10.00	254	3.00	76	4.92	125	4.25	108	_	_	_	_	15.0	6.8
6 OD	165.1	6.50	165.1	6.33	161	0.38	10	0.63	16	5.81	148	11.92	303	4.33	110	6.48	165	6	152	_	_	_	_	31.5	14.3
6	150	6.63	168.3	6.45	164	0.38	10	0.63	16	5.81	148	11.92	303	4.33	110	6.48	165	6	152	_	_	_	_	31.3	14.2
8	200	8.63	219	8.44	214	0.44	11	0.75	19	5.25	133	12.85	326	5.67	114	6.48	165	6	152	1.32	34	5.87	149	43.0	19.5
10	250	10.77	250	10.55	268	0.50	13	0.75	19	6.25	159	15	381	6.77	172	8.74	222	6	152	1.74	44	7.44	189	77.0	35

^{**} Compliance with the Standard for Butterfly Valves for Fire Protection Service, UL 1091, and Indicating Values, FM Class Number 1112.

MARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Visit our website for the most current information.

*Weighted average lead content ≤ 0.25%

[†] See Grooved Pipe Specification section

350 PSI WWP UL/FM Butterfly Valves

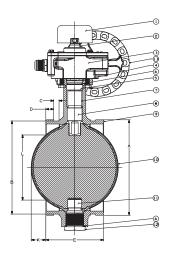
Designed for normally closed position monitoring

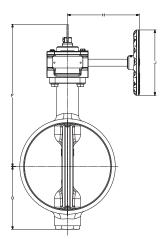
Fire Protection Valve • Grooved Mechanical Style • Nylon Coated Ductile Iron Body • Extended Neck • Elastomer Encapsulated Disc • Factory Installed Internal Monitoring Switches • Compatible with IPS Pipe

350 PSI/24 Bar Non-Shock Cold Water 21/2" - 10"

Warning: These valves are <u>not</u> to be used between the water source and sprinkler head.

UL/ULC LISTED** ● 2½" - 10" LISTED FOR INDOOR AND OUTDOOR SERVICE ● THIRD PARTY CERTIFIED TO NSF/ANSI 61 AND 372 ● END CONNECTION PER AWWA C606


_		
	PART	SPECIFICATION
1	Indicator Flag	Painted Steel
2	Stem Adapter	Steel
3	Gear Operator	Cast Iron and Steel
4	Retaining Ring	Carbon Steel
5	Cartridge Seal	Brass ASTM C36000
6	Stem Seals	EPDM
7	Upper Stem	Stainless Steel ASTM A582 Type 416
8	Upper Bushing	Steel with PTFE Lining
9	Body	Ductile Iron ASTM A395 with Polyaminde Coating
10	Disc	Ductile Iron ASTM A536 with EPDM Encapsulation
11	Lower Bushing	Steel with PTFE Lining
12	Lower Stem	Stainless Steel ASTM A582 Type 416
13	Handwheel	Cast Iron


Note: Comes with two factory mounted internal supervisory switches. Uses NIBCO model T1447532 PP switch. See I & M manual for installation and wiring instructions

Ground post or wall post not available. Normally closed monitored.

GD-6865-C-8N 284", 3", 4", 6", 8", 10"

DIMENSIONS—WEIGHTS

								D	imens	ions															
S	IZE		A		3		;		D		E		F		G		1		J		(L	We	ight
In.	mm.	In.	mm.	ln.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	ln.	mm.	ln.	mm.	Lbs.	Kg.
2½"	65	2.88	73	2.72	69	0.31	8	0.63	16	3.81	97	8.95	227	2.20	56	4.92	125	4.25	108	_	_	_	_	9.5	4.3
3 OD	76.1	3.00	76.1	2.85	72	0.31	8	0.63	16	3.81	97	9.16	233	2.47	63	4.92	125	4.25	108	_	_	_	_	11.3	5.2
3	80	3.50	80.0	3.34	85	0.31	8	0.63	16	3.81	97	9.16	233	2.47	63	4.92	125	4.25	108				_	11.6	5.3
4	100	4.50	114.3	4.33	110	0.38	10	0.63	16	4.56	116	10.00	254	3.00	76	4.92	125	4.25	108	_	_	_	_	15.0	6.8
6 OD	165.1	6.50	165.1	6.33	161	0.38	10	0.63	16	5.81	148	11.92	303	4.33	110	6.48	165	6	152	_	_	_	_	31.5	14.3
6	150	6.63	168.3	6.45	164	0.38	10	0.63	16	5.81	148	11.92	303	4.33	110	6.48	165	6	152	_	_	_	_	31.3	14.2
8	200	8.63	219	8.44	214	0.44	11	0.75	19	5.25	133	12.85	326	5.67	114	6.48	165	6	152	1.32	34	5.87	149	43.0	19.5
10	250	10.77	250	10.55	268	0.50	13	0.75	19	6.25	159	15	381	6.77	172	8.74	222	6	152	1.74	44	7.44	189	77.0	35

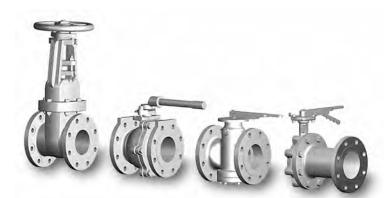
^{**} Compliance with the Standard for Butterfly Valves for Fire Protection Service, UL 1091, and Indicating Valves, FM Class Number 1112.

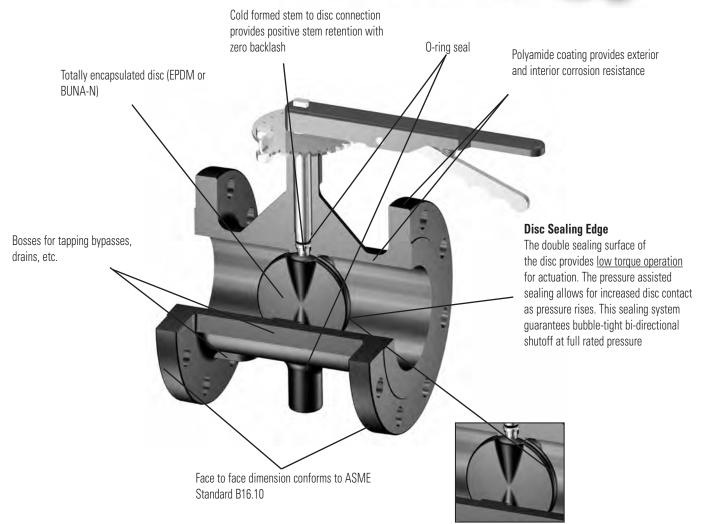
WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

*Weighted average lead content ≤ 0.25%

[†] See Grooved Pipe Specification section

4Valves in one


FC-2000 Series FD-5000 Series


Sizes 2"-12"

Your Best Valve Replacement Option

NIBCO® flanged butterfly valve dimensionally replaces the:

- Gate Valve
- Ball Valve
- Plug Valve
- Spooled Butterfly Valve

Visit our website for the most current information.

Note: Polyamide coating maximum temperature 200°F

200 PSI Flanged End Butterfly Valves

Polyamide Coated Cast Iron Body • Extended Neck • Cold form Stem Drive • Elastomer Encapsulated Disc • Flanged Ends • Maximum Temperature 200°F with EPDM Only • ASME B16.10 Face-to-Face Dimensions

Patent pending

Sizes 2" through 12"

DESIGNED TO MEET MSS SP-67 STANDARD

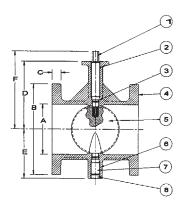
MATERIAL LIST

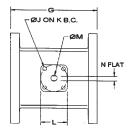
	1417	11 21117 12 210 1
	PART	SPECIFICATION
1.	Upper Stem	Stainless Steel, ASTM A582 Type 416
2.	Upper Bushing	PTFE over Porous Bronze, Steel Backed
3.	O-Ring	EPDM or BUNA-N
4.	Body	Cast Iron ASTM A126 Class B with Polyamide Coating
5.	Disc	Ductile Iron ASTM A395 with EPDM or BUNA-N Encapsulation
6.	Lower Bushing	PTFE over Porous Bronze, Steel Backed
7.	Lower Stem	Stainless Steel, ASTM A582 Type 416
8.	Dust Plug	PVC
9.	Nameplate	Aluminum

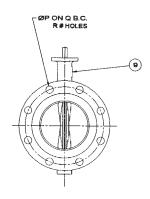
Class 125 flange ends

Polyamide coating has NSF certification

DIMENSIONS — WEIGHTS


S	ize								
ln.	mm.	Α	В	С	D	E	F	G	J
2	50	2.11	6.0	0.62	5.69	3.16	6.94	7.00	0.437
2 1/2	6	2.59	7.0	0.69	5.78	3.25	7.03	7.50	0.437
3	80	3.07	7.5	0.75	5.99	3.54	7.24	8.00	0.437
4	100	4.03	9.0	0.94	6.99	4.35	8.24	9.00	0.437
5	125	5.05	10.0	0.94	7.47	4.85	8.72	10.00	0.437
6	150	6.07	11.0	1.00	8.28	5.94	9.53	10.50	0.437
8	200	7.98	13.5	1.12	9.25	6.87	10.50	11.50	0.437
10	250	10.02	16.0	1.19	11.03	9.18	12.28	13.00	0.562
12	300	12.00	19.0	1.25	12.01	10.16	13.26	14.00	0.562


S	ize								We	ight
In.	mm.	K	L	M	N	P	Q	R	Lbs.	Kg.
2	50	3.25	3.25	0.50	0.37	0.75	4.75	4	16.5	7.5
2 1/2	65	3.25	3.25	0.50	0.37	0.75	5.50	4	24	10.9
3	80	3.25	3.25	0.50	0.37	0.75	6.00	4	28	12.7
4	100	3.25	3.25	0.66	0.50	0.75	7.50	8	44	20.0
5	125	3.25	3.25	0.66	0.50	0.88	8.50	8	53	24.1
6	150	3.25	3.25	0.78	0.56	0.88	9.50	8	65	30.0
8	200	3.25	3.25	0.78	0.56	0.88	11.75	8	94	42.7
10	250	5.00	4.75	1.06	0.75	1.00	14.25	12	155	70.4
12	300	5.00	4.75	1.06	0.75	1.00	17.00	12	214	97.6


WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

FC-27*5-0 *Optional disc EPDM (6) or BUNA (7)

NOT RECOMMENDED FOR STEAM SERVICE

285 PSI Flanged End Butterfly Valves

Polyamide Coated Ductile Iron Body • Extended Neck • Cold Form Stem Drive • Elastomer Encapsulated Disc • Flanged Ends • Maximum Temperature 200°F with EPDM Only • ASME B16.10 Face-to-Face Dimensions

Patent pending

Sizes 2" through 12"

Install between Std. ASME Class 125/150 flanges.

DESIGNED TO MEET MSS SP-67 STANDARD

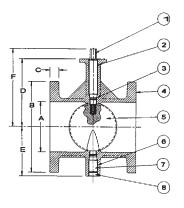
MATERIAL LIST

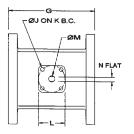
	PART	SPECIFICATION
1.	Upper Stem	Stainless Steel, ASTM A582 Type 416
2.	Upper Bushing	PTFE over Porous Bronze, Steel Backed
3.	"O" Ring	EPDM or BUNA-N
4.	Body	Ductile Iron ASTM A536
		with Polyamide Coating
5.	Disc	Ductile Iron ASTM A395
		with EPDM or BUNA-N Encapsulation
6.	Lower Bushing	PTFE over Porous Bronze, Steel Backed
7.	Lower Stem	Stainless Steel, ASTM A582 Type 416
8.	Dust Plug	PVC
9.	Nameplate	Aluminum

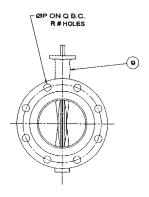
Class 150 ends are standard. PN10, PN16 available. Sizes 2" through 8", 285 psi - 10" to 12", 200 PSI Polyamide coating has NSF certification

DIMENSIONS — WEIGHTS

Siz	ze								
In.	mm.	Α	В	С	D	E	F	G	<u>H</u>
2	50	2.11	6.0	0.62	5.69	3.16	6.94	7.00	3.62
2 1/2	65	2.59	7.0	0.69	5.78	3.25	7.03	7.50	4.12
3	80	3.07	7.5	0.75	5.99	3.54	7.24	8.00	5.00
4	100	4.03	9.0	0.94	6.99	4.35	8.24	9.00	6.19
5	125	5.05	10.0	0.94	7.47	4.85	8.72	10.00	7.31
6	150	6.07	11.0	1.00	8.28	5.94	9.53	10.50	8.50
8	200	7.98	13.5	1.12	9.25	6.87	10.50	11.50	10.62
10	250	10.02	16.0	1.19	11.03	9.18	12.28	13.00	12.75
12	300	12.00	19.0	1.25	12.01	10.16	13.26	14.00	15.00


Si	ze									We	ight
In.	mm.	J	K	L	M	N	P	Q	R	Lbs.	Kg.
2	50	0.437	3.25	3.25	0.50	0.37	0.75	4.75	4	16	7.3
2 1/2	65	0.437	3.25	3.25	0.50	0.37	0.75	5.50	4	23	10.4
3	80	0.437	3.25	3.25	0.50	0.37	0.75	6.00	4	27	12.3
4	100	0.437	3.25	3.25	0.66	0.50	0.75	7.50	8	43	19.5
5	125	0.437	3.25	3.25	0.66	0.50	0.88	8.50	8	52	23.6
6	150	0.437	3.25	3.25	0.78	0.56	0.88	9.50	8	65	29.5
8	200	0.437	3.25	3.25	0.78	0.56	0.88	11.75	8	93	42.2
10	250	0.562	5.00	4.75	1.06	0.75	1.00	14.25	12	154	69.9
12	300	0.562	5.00	4.75	1.06	0.75	1.00	17.00	12	210	95.3


WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.


Visit our website for the most current information.

FD-57*5-0 *Optional disc EPDM (6) or BUNA (7)

NOT RECOMMENDED FOR STEAM SERVICE

HIGH **PERFORMANCE BUTTERFLY VALVE**

NIBCO

LCS-6822 (Class 150) LCS-7822 (Class 300)

APPLICATIONS

Ideally suited for commercial, industrial, and mechanical HVAC services. Use in other applications must be approved by the manufacturer

- · Heating hot water
- Condenser water
- Glycol
- · Chilled water
- Compressed air
- Steam rated 2" 12" 150 psi for on/off applications and 50 psi modulating
- Vacuum to 27" Hg
- Chemical process
- Isolation and throttling
- Domestic water

MATERIALS & CONSTRUCTION

- Body constructed of carbon steel
- · Stainless steel disc and stem
- Seats of reinforced PTFE for exceptional chemical and heat resistance
- Welded disc pins
- Silicon is not used in the manufacture of this valve

DESIGN CRITERIA

- MSS SP-68 (Design)
- MSS SP-25 (Markings)
- API-609 Seat pressure/ temperature ratings/blow-out proof stem
- ASME/ANSI B16.34A, body pressure/temperature ratings
- ASME/ANSI B16.5 flange dimensions
- ISO 5211, actuator mounting top works
- ANSI Class 150 and Class 300
- · Dual offset design

FEATURES

- Powder coated epoxy finish
- One-piece stem
- Direct mount actuation
- Live loaded adjustable packing with unique flush-mounted packing gland
- Integrally cast disc-stop
- · Dual offset design

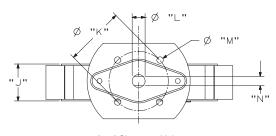
- · Blow-out proof stem
- Uni-directional dead end service (Arrow on body indicates flow direction)
- Maximum operating temperature 400°F at 100 psi
- 100% production tested per MSS SP-68

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

High Performance Butterfly Valve Series 6822 & 7822

Carbon Steel Body • Stainless Steel Disc and Stem • ISO 5211 Actuation Mounting

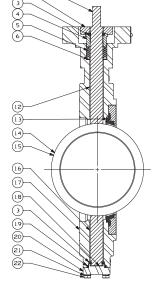
CLASS 150 - SIZES 2" THROUGH 30" CLASS 300 - SIZES 2" THROUGH 24"

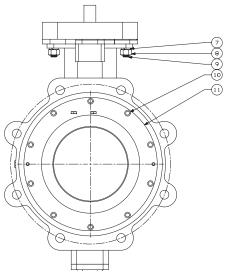

ANSI Class 150 & 300

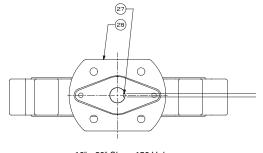
١	V	1A	T	Ε	R	ľ	١L	L	IST	Г

		WAI ERIAL LIST
	PART	SPECIFICATION
1.	Stem	Stainless Steel UNS ASTM A564 UNS S17400
2.	Flange, Gland	Stainless Steel ASTM A351 Grade CF8M
3.	Retainer, Stem (4)	Stainless Steel ASTM A276 UNS S31600
4.	Gland, Packing	Stainless Steel ASTM A276 UNS S31600
5.	Packing (set)	PTFE
6.	Retainer, Packing	Stainless Steel ASTM A276 UNS S31600
7.	Lockwasher (2)	Stainless Steel Type 304 18-8
8.	Nut (2)	Stainless Steel Type 304 18-8
9.	Stud (2)	Stainless Steel Type 304 18-8
10.	Screw, SHCS	Stainless Steel Type 304 18-8
<u>11.</u>	Retainer, Seat	Stainless Steel ASTM A276 UNS S31600
12.	Bushing, Upper	Stainless Steel Type 304 PTFE Coated
13.	Seat	PTFE 15% Glass Reinforced
14.	Disc	Stainless Steel ASTM A351 Grade CF8M
15.	Pin, Disc (2)	Stainless Steel ASTM A276 UNS S31600
16.	Bushing, Lower	Stainless Steel TYPE 304 PTFE Coated
17.	Body	Carbon Steel ASTM A216 GRADE WCB
18.	Disc, Spacer	Stainless Steel ASTM A240 UNS S31600
19.	Seal, Lower	PTFE
20.	Cap, Body	Stainless Steel ASTM A351 Grade CF8M
21.	Lockwasher (4)	Stainless Steel Type 304 18-8
22.	Screw, Hex (4)	Stainless Steel Type 304 18-8
23.	Handle Assembly	Mallable Iron (shown separately)
24.	Plate, Throttle	Steel, Plated (shown separately)
25.	Screw, Hex	Carbon Steel, Plated (shown separately)
26.	Lockwasher	Carbon Steel, Plated (shown separately)
27.	Key	Carbon Steel ASTM A108 Grade 1045
28.	ID Plate	Stainless Steel

NOTE: For severe steam applications, contact NIBCO Technical Services.

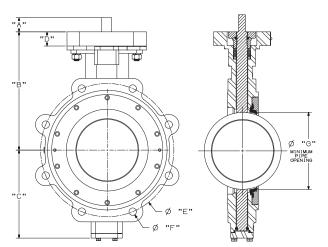

NOTE: If valve is installed opposite the flow arrow for dead end service a downstream flange is required.

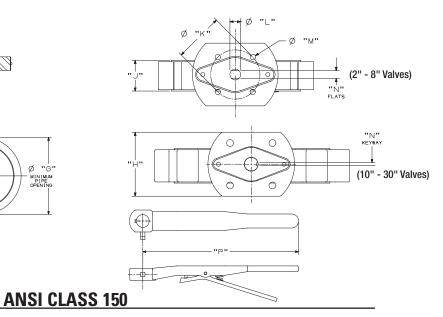



2" - 8" Class 150 Valves 2" - 6" Class 300 Valves

 \wedge

WARNING: Cancer and Reproductive Harm - www.P65Warnings.ca.gov.




10" - 30" Class 150 Valves 8" - 24" Class 300 Valves

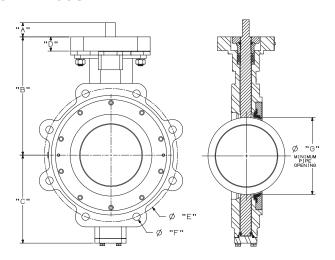
High Performance Butterfly Valve Series 6822

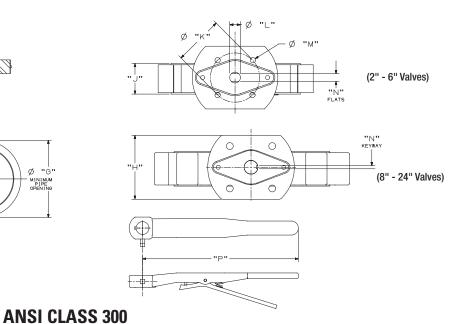
DIMENSIONS — WEIGHTS

Valve	Gear Operator		A		В		C)		E	F		G
Size	Mounting	Īn.	mm	In.	mm.	Īn.	mm.	In.	mm.	In.	mm.	Threads	In.	mm.
2"	F07	1.25	31.75	5.78	146.8	3.94	100.1	1.25	31.8	4.75	120.65	4 X 5/8"-11 UNC	1.68	42.7
21/2"	F07	1.25	31.75	6.49	164.8	4.06	103.1	1.25	31.8	5.50	139.70	4 X 5/8"-11 UNC	2.24	56.9
3"	F07	1.25	31.75	6.77	172.0	4.37	111.0	1.25	31.8	6.00	152.40	4 X 5/8"-11 UNC	2.72	69.1
4"	F07	1.25	31.75	6.98	177.3	4.80	121.9	1.25	31.8	7.50	190.50	8 X 5/8"-11 UNC	3.38	85.9
5"	F07	1.25	31.75	8.39	213.1	6.38	162.1	1.25	31.8	8.50	215.90	8 X 3/4"-10 UNC	4.48	113.8
6"	F07	1.25	31.75	8.71	221.2	5.97	151.6	1.25	31.8	9.50	241.30	8 X 3/4"-10 UNC	5.34	135.6
8"	F10	1.25	31.75	10.43	264.9	7.76	197.1	1.60	40.6	11.75	298.45	8 X 3/4"-10 UNC	7.28	184.9
10"	F12	2.00	50.80	11.81	300.0	8.61	218.7	1.00	25.4	14.25	361.95	12 X 7/8"-9 UNC	9.13	231.9
12"	F12	2.00	50.80	12.80	325.1	10.63	270.0	1.00	25.4	17.00	431.80	12 X 7/8"-9 UNC	10.68	271.3
14"	F12	2.25	57.15	16.03	407.2	11.68	296.7	1.00	25.4	18.75	476.25	12 X 1"-8 UNC	12.14	308.4
16"	F16	3.00	76.20	16.73	424.9	13.78	350.0	1.88	47.8	21.25	539.75	16 X 1"-8 UNC	13.98	355.1
18"	F16	3.00	76.20	17.72	450.1	14.76	374.9	1.88	47.8	22.75	577.85	16 X 1-1/8"-8 UN*	16.18	411.0
**20"	F16	3.00	76.20	18.94	481.1	16.43	417.3	2.00	50.8	25.00	635.00	20 X 1-1/8"-8 UN*	18.13	460.5
**24"	F16/F25	4.00	101.60	23.23	590.0	19.37	492.0	2.50	63.5	29.50	749.30	20 X 1-1/4"-8 UN*	21.17	537.7
**30"	F25	5.33	135.38	26.90	683.3	24.24	615.7	3.00	76.2	36.00	914.4	28 X 1-¼"8 UN*	26.87	682.5

^{*}SPECIAL PITCH CAP SCREW THREAD REQUIRED PER MSS SP-68 SPECIFICATIONS.

^{**}SHORT SCREWS REQUIRED FOR BLIND TAPPED HOLES NEAREST TO STEM FOR 20" AND LARGER VALVES. SEE INSTALLATION, OPERATION


	& MAINTENANCE GUIDE II FOR SERIES 6822 & 7822.															Operating	Torque	
Valve		Н		J		K		L	IV	1		N		•	Valv	e Wt.	at 285	psi
Size	ln.	mm.	ln.	mm.	ln.	mm.	ln.	mm.	ln.	mm.	ln.	mm.	ln.	mm.	Lbs.	Kg.	InLbs.	N-m
2"	4.15	105.4	1.69	42.93	2.76	70.10	0.500	12.700	0.37	9.40	0.375	9.525	13.75	349.3	12.5	6	290	33
2½"	4.15	105.4	1.84	46.74	2.76	70.10	0.625	15.875	0.37	9.40	0.438	11.125	13.75	349.3	16	7	320	36
3"	4.15	105.4	1.88	47.75	2.76	70.10	0.625	15.875	0.37	9.40	0.438	11.125	13.75	349.3	18	8	350	40
4"	4.15	105.4	2.12	53.85	2.76	70.10	0.625	15.875	0.37	9.40	0.438	11.125	13.75	349.3	31	14	510	58
5"	4.15	105.4	2.25	57.15	2.76	70.10	0.750	19.050	0.37	9.40	0.500	12.700	13.75	349.3	38	17	725	82
6"	4.15	105.4	2.25	57.15	2.76	70.10	0.750	19.050	0.37	9.40	0.500	12.700	13.75	349.3	44	20	845	95
8"	5.12	130.0	2.50	63.50	4.02	102.11	0.875	22.225	0.44	11.18	0.625	15.875			68	31	1430	162
10"	5.25	133.4	2.83	71.88	4.92	124.97	1.125	28.575	0.56	14.22	1/4"	X 1/4"	_	_	104	47	2400	271
12"	5.25	133.4	3.19	81.03	4.92	124.97	1.125	28.575	0.56	14.22	1/4"	X 1/4"	_	_	148	67	3650	412
14"	5.25	133.4	3.62	91.95	4.92	124.97	1.375	34.925	0.56	14.22	5/16"	X 5/16"	_	_	201	91	6000	678
16"	6.50	165.1	4.00	101.60	6.50	165.10	1.875	47.625	0.81	20.57	3/8"	X 1/2"	_	_	309	140	8800	994
18"	6.50	165.1	4.50	114.30	6.50	165.10	1.875	47.625	0.81	20.57	3/8"	X 1/2"	_	_	346	157	11500	1299
20"	6.50	165.1	5.00	127.00	6.50	165.10	2.125	53.975	0.81	20.57	1/2"	X 1/2"			426	194	16500	1864
24"	11.02	279.9	6.06	153.92	6.50	165.10	2.555	64.897	0.81	20.57	3/4"	X 1/2"			675	307	24600	2779
30"	11.25	285.8	7.51	190.75	10.00	254.00	3.142	79.807	0.69	15.53	.866	X .788	_		1026	466	37175	4200


MARNING: Cancer and Reproductive Harm - www.P65Warnings.ca.gov.

High Performance Butterfly Valve Series 7822

SIZES 2" THROUGH 24"

DIMENSIONS — WEIGHTS

	Gear													
Valve	Operator		Α		В		C	- 1)		E	F		G
Size	Mounting	ln.	mm	In.	mm.	In.	mm.	In.	mm.	In.	mm.	Threads	In.	mm.
2"	F07	1.25	31.75	5.78	146.8	3.94	100.1	1.25	31.8	5.00	127.00	8 X 5/8"-11 UNC	1.68	42.7
2½"	F07	1.25	31.75	6.49	164.8	4.06	103.1	1.25	31.8	5.88	149.35	8 X 3/4"-10 UNC	2.24	56.9
3"	F07	1.25	31.75	6.77	172.0	4.37	111.0	1.25	31.8	6.62	168.15	8 X 3/4"-10 UNC	2.72	69.1
4"	F07	1.25	31.75	6.98	177.3	4.80	121.9	1.25	31.8	7.88	200.15	8 X 3/4"-10 UNC	3.38	85.9
5"	F07	1.25	31.75	8.39	213.1	6.38	162.1	1.25	31.8	9.25	234.95	8 X 3/4"-10 UNC	4.42	112.3
6"	F07	1.25	31.75	9.53	242.1	7.75	196.9	1.25	31.8	10.62	269.75	12 X 3/4"-10 UNC	4.07	103.4
8"	F10	2.00	50.80	11.42	290.1	8.91	226.3	2.00	50.8	13.00	330.20	12 X 7/8"-9 UNC	7.03	178.6
10"	F12	2.25	57.15	12.32	312.9	9.88	251.0	1.00	25.4	15.25	387.35	16 X 1"-8 UNC	9.11	231.4
12"	F12	3.00	76.20	13.90	353.1	11.00	279.4	1.00	25.4	17.75	450.85	16 X 1-1/8"-8 UN*	10.55	268.0
14"	F16	3.00	76.20	15.95	405.1	12.57	319.3	2.00	50.8	20.25	514.35	20 X 1-1/8"-8 UN*	11.99	304.5
16"	F16	3.00	76.20	18.31	465.1	15.83	402.1	2.00	50.8	22.50	571.50	20 X 1-1/4"-8 UN*	13.80	350.5
18"	F25	4.33	109.98	19.29	490.0	16.81	427.0	1.25	31.8	24.75	628.65	24 X 1-1/4"-8 UN*	15.81	401.6
**20"	F25	4.33	109.98	22.44	570.0	17.72	450.1	1.25	31.8	27.00	685.80	24 X 1-1/4"-8 UN*	17.50	444.5
**24"	F25	4.33	109.98	24.92	633.0	21.65	549.9	1.25	31.8	32.00	912.80	24 X 1-1/2"-8 UN*	21.50	546.1

^{*}SPECIAL PITCH CAP SCREW THREAD REQUIRED PER MSS SP-68 SPECIFICATIONS.

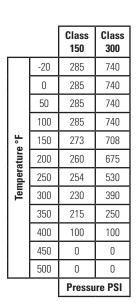
^{**}SHORT SCREWS REQUIRED FOR BLIND TAPPED HOLES NEAREST TO STEM FOR 20" AND LARGER VALVES. SEE INSTALLATION, OPERATION & MAINTENANCE GUIDE II FOR SERIES 6822 & 7822.

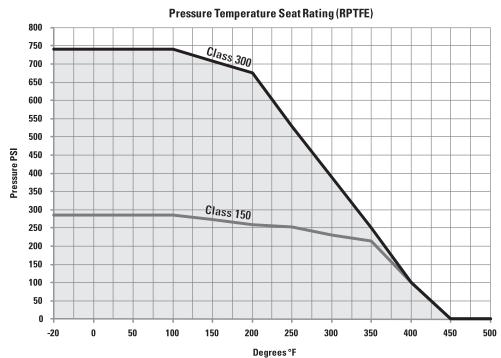
Valve		Н		J		K		L	IV	1	N		Р		Val	ve	Operating at 700	
Size	ln.	mm.	ln.	mm.	In.	mm.	ln.	mm.	In.	mm.	In.	mm.	In.	mm.	Lbs.	Kg.	InLbs.	<u>N-m</u>
2"	4.15	105.4	1.69	42.93	2.76	70.10	0.500	12.700	0.37	9.40	0.375	9.525	13.75	349.3	14	6	390	44
2½"	4.15	105.4	1.84	46.74	2.76	70.10	0.625	15.875	0.37	9.40	0.438	11.125	13.75	349.3	21	10	425	48
3"	4.15	105.4	1.88	47.75	2.76	70.10	0.625	15.875	0.37	9.40	0.438	11.125	13.75	349.3	27	12	450	51
4"	4.15	105.4	2.12	53.85	2.76	70.10	0.625	15.875	0.37	9.40	0.438	11.125	13.75	349.3	49	22	725	82
5"	4.15	105.4	2.31	58.67	2.76	70.10	0.750	19.050	0.37	9.40	0.500	12.700	13.75	349.3	60	27	1000	113
6"	4.15	105.4	2.31	58.67	2.76	70.10	0.750	19.050	0.37	9.40	0.500	12.700	13.75	349.3	71	32	1250	141
8"	5.12	130.0	2.88	73.15	4.02	102.11	1.125	28.575	0.44	11.18	1/4"	X 1/4"		_	121	55	2025	229
10"	5.25	133.4	3.25	82.55	4.92	124.97	1.375	34.925	0.56	14.22	5/16"	X 5/16"		_	143	65	3775	426
12"	5.25	133.4	3.62	91.95	4.92	124.97	1.625	41.275	0.56	14.22	3/8"	X 3/8"		_	216	98	5725	647
14"	6.50	165.1	4.62	117.35	6.50	165.10	1.875	47.625	0.81	20.57	1/2"	X 3/8"		_	378	172	11500	1299
16"	6.50	165.1	5.25	133.35	6.50	165.10	1.875	47.625	0.81	20.57	1/2"	X 3/8"		_	488	222	15338	1733
18"	11.02	279.9	5.88	149.35	10.0	254.00	2.555	64.897	0.75	19.05	3/4"	X 1/2"		_	720	327	19516	2205
20"	11.02	279.9	6.30	160.02	10.0	254.00	2.555	64.897	0.75	19.05	3/4"	X 1/2"		_	855	389	26022	2940
24"	11.02	279.9	7.12	180.85	10.0	254.00	2.555	64.897	0.75	19.05	3/4"	X 1/2"	_	_				

Visit our website for the most current information.

WARNING: Cancer and Reproductive Harm - www.P65Warnings.ca.gov.

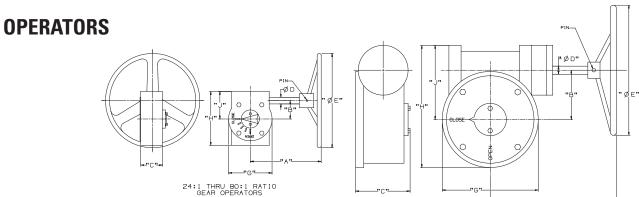
High Performance Butterfly Valve Technical Data


CLASS 150 HPBFV 6800 Series Flow Data


Valve Size	Cv	DISC OPEN - Degrees											
14110 0120	Rating	10°	20°	30°	40°	50°	60°	70°	80°	90°			
2"	92	2	6	13	20	30	43	72	81	92			
21/2"	150	3	11	21	33	50	71	117	132	150			
3"	260	5	18	36	57	86	122	203	230	260			
4"	460	9	32	64	101	152	216	360	405	460			
5"	760	15	53	106	167	251	357	595	670	760			
6"	1150	23	81	161	253	380	540	897	1015	1150			
8"	2100	42	147	295	462	695	987	1640	1850	2100			
10"	3200	64	225	450	705	1056	1505	2496	2816	3200			
12"	4700	94	330	660	1035	1551	2210	3666	4136	4700			
14"	5800	116	406	815	1276	1915	2726	4525	5105	5800			
16"	8000	160	560	1120	1760	2640	3760	6240	7040	8000			
18"	10500	210	735	1470	2310	3465	4935	8190	9240	10500			
20"	14000	280	980	1960	3080	4620	6580	10920	12320	14000			
24"	21000	420	1470	2940	4620	6930	9870	16380	18480	21000			
30"	33500	670	2345	4690	7370	11055	15745	26130	29480	33500			

CLASS 300 HPBFV 7800 Series Flow Data

Valve	Cv				DIS	C OPEN - Deg	rees			
Size	Rating	10°	20°	30°	40°	50°	60°	70°	80°	90°
2"	92	2	6	13	20	30	43	72	81	92
2 ½"	150	3	11	21	33	50	71	117	132	150
3"	260	5	18	36	57	86	122	203	230	260
4"	460	9	32	65	101	152	216	360	405	460
5"	760	15	53	106	167	251	357	595	670	760
6"	1150	23	81	161	253	380	540	987	1015	1150
8"	1900	38	133	266	418	627	895	1485	1675	1900
10"	2800	56	196	392	616	925	1316	2185	2465	2800
12"	4100	82	287	575	905	1355	1930	3200	3610	4100
14"	5500	110	385	770	1210	1815	2585	4290	4840	5500
16"	7600	152	532	1065	1675	2510	3575	5930	6690	7600
18"	9900	198	695	1390	2180	3270	4655	7725	8715	9900
20"	13000	260	910	1820	2860	4290	6110	10140	11440	13000
24"	19500	390	1365	2730	4290	6435	9165	15210	17160	19500


Cv = Flow in U.S. Gallons per minute of $60^{\circ}F$ water with a 1 psi pressure drop across valve

High Performance Butterfly Valve Technical Data

GEAR OPERATOR DIMENSIONS

Valve	Size	Gear Operator	NIBCO Material	Ratio	Gear	Gear	-	4		3	(;	-)
Class 150	Class 300	Figure Number	Number		Operator Efficiency	Operator Mounting	ln.	mm.	ln.	mm.	In.	mm.	In.	mm.
2"	2"	G024:1-1-8	RG70001	24:1	15%	F07	5.77	146.6	1.73	43.9	2.65	67.3	0.625	15.88
2-1/2", 3", 4"	2-1/2", 3",4"	G024:1-3-8 W/STSA-4	RG70002	24:1	15%	F07	5.77	146.6	1.73	43.9	2.65	67.3	0.625	15.88
5" 6"	5" 6"	G024:1-3-8 W/STSA-5	RG70003	24:1	15%	F07	5.77	146.6	1.73	43.9	2.65	67.3	0.625	15.88
8"	_	G030:1-1-12 W/STSA-6	RG70004	30:1	19%	F10	9.50	241.3	2.50	63.5	3.00	76.2	0.750	19.05
_	8"	G030:1-1-12	RG70005	30:1	19%	F10	9.50	241.3	2.50	63.5	3.00	76.2	0.750	19.05
10"	_	G030:1-2-12	RG70006	30:1	19%	F12	9.50	241.3	2.50	63.5	3.00	76.2	0.750	19.05
12"	_	G050:1-1-16	RG70007	50:1	20%	F12	9.00	228.6	3.00	76.2	3.00	76.2	0.750	19.05
14"	10"	G050:1-3-16	RG70008	50:1	20%	F12	9.00	228.6	3.00	76.2	3.00	76.2	0.750	19.05
_	12"	G080:1-2-16	RG70009	80:1	16%	F12	10.75	273.1	4.75	120.7	4.40	111.8	1.000	25.40
16"	14"	G080:1-1-16	RG70010	80:1	16%	F16	10.75	273.1	4.75	120.7	4.40	111.8	1.000	25.40
18"	_	G080:1-1-1-20	RG70011	80:1	16%	F16	10.75	273.1	4.75	120.7	4.40	111.8	1.000	25.40
_	16"	G0320:1-3-20	RG70020	320:1	15%	F16	15.51	394.0	6.06	153.9	6.46	164.1	1.190	30.23
20"	_	G0320:1-1-20	RG70012	320:1	15%	F16	15.51	394.0	6.06	153.9	6.46	164.1	1.190	30.23
24"	18" 20"	G0320:1-2-20	RG70013	320:1	15%	F25	15.51	394.0	6.06	153.9	6.46	164.1	1.190	30.23
30"	24"	G0320:1-4-20	RG70021	320:1	15%	F25	15.51	394.0	6.06	153.9	6.46	164.1	1.190	30.23

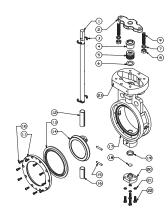
320:1 RATIO GEAR OPERATORS

Valve	Size	ı	E	(3	I	1	,	J	We	ight	Mounting	Handwheel	Hand Wheel
Class 150	Class 300	ln.	mm.	ln.	mm.	ln.	mm.	ln.	mm.	Lbs.	Kg	Screws	Pin Size	Figure No.
2"	2"	8	203	4.00	101.6	5.07	128.8	2.90	73.7	12	5.5	5/16"-18 UNC	Ø.190 X 1.63 LONG	RG70014
2-1/2", 3", 4"	2-1/2", 3",4"	8	203	4.00	101.6	5.07	128.8	2.90	73.7	12	5.5	5/16"-18 UNC	Ø.190 X 1.63 LONG	RG70014
5" 6"	5" 6"	8	203	4.00	101.6	5.07	128.8	2.90	73.7	12	5.5	5/16"-18 UNC	Ø.190 X 1.63 LONG	RG70014
8"	_	12	305	6.00	152.4	6.90	175.3	3.90	99.1	26.5	12	3/8"-16 UNC	Ø.190 X 1.63 LONG	RG70015
_	8"	12	305	6.00	152.4	6.90	175.3	3.90	99.1	26.5	12	3/8"-16 UNC	Ø.190 X 1.63 LONG	RG70015
10"	_	12	305	6.00	152.4	6.90	175.3	3.90	99.1	26.5	12	1/2"-13 UNC	Ø.190 X 1.63 LONG	RG70015
12"	_	16	406	6.70	170.2	7.80	198.1	4.60	116.8	37.5	17	1/2"-13 UNC	Ø.190 X 1.63 LONG	RG70016
14"	10"	16	406	6.70	170.2	7.80	198.1	4.60	116.8	37.5	17	1/2"-13 UNC	Ø.190 X 1.63 LONG	RG70016
_	12"	16	406	10.25	260.4	11.50	292.1	6.25	158.8	72	33	1/2"-13 UNC	Ø.380 X 1.81 LONG	RG70017
16"	14"	16	406	10.25	260.4	11.50	292.1	6.25	158.8	72	33	3/4"-10 UNC	Ø.380 X 1.81 LONG	RG70017
18"	_	20	508	10.25	260.4	11.50	292.1	6.25	158.8	74	34	3/4"-10 UNC	Ø.380 X 2.50 LONG	RG70018
_	16"	20	508	11.81	300.0	17.00	431.8	11.10	281.9	200	91	3/4"-10 UNC	Ø.380 X 2.50 LONG	RG70019
20"	_	20	508	11.81	300.0	17.00	431.8	11.10	281.9	200	91	3/4"-10 UNC	Ø.380 X 2.50 LONG	RG70019
24"	18" 20"	20	508	11.81	300.0	17.00	431.8	11.10	281.9	200	91	5/8"-11 UNC	Ø.380 X 2.50 LONG	RG70019
30"	24"	20	508	11.81	300.0	17.00	431.8	11.10	281.9	200	91	5/8"-11 UNC	Ø.380 X 2.50 LONG	RG70019

LEVER HANDLE

ltem	Description	Material
23	Handle Assembly	Mallable Iron
24	Plate, Throttle	Steel, Plated
25	Screw, Hex	Carbon Steel, Plated
26	Lockwasher	Carbon Steel Plated

Locking Handle Optional
2" - 6" Sizes Only



High Performance Butterfly Valve Technical Data

MATERIAL LIST

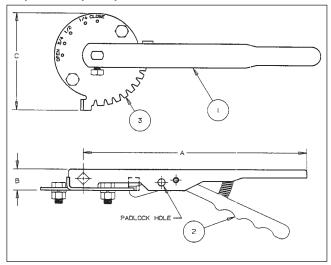
	PART	SPECIFICATION
1.	Stem	Stainless Steel UNS ASTM A564 UNS S17400
2.	Flange, Gland	Stainless Steel ASTM A351 Grade CF8M
3.	Retainer, Stem (2)	Stainless Steel ASTM A276 UNS S31600
4.	Gland, Packing	Stainless Steel ASTM A276 UNS S31600
5.	Packing	PTFE
6.	Retainer, Packing	Stainless Steel ASTM A276 UNS S31600
7.	Lockwasher (2)	Stainless Steel Type 304 18-8
8.	Nut (2)	Stainless Steel Type 304 18-8
9.	Stud (2)	Stainless Steel Type 304 18-8
10.	Screw, SHCS	Stainless Steel Type 304 18-8
11.	Retainer, Seat	Stainless Steel ASTM A276 UNS S31600

	PART	SPECIFICATION
12.	Bushing, Upper	Stainless Steel Type 304 PTFE Coated
13.	Seat	PTFE 15% Glass Reinforced
14.	Disc	Stainless Steel ASTM A351 Grade CF8M
15.	Pin, Disc (2)	Stainless Steel ASTM A276 UNS S31600
16.	Bushing, Lower	Stainless Steel Type 304 PTFE Coated
17.	Body	Carbon Steel ASTM A216 Grade WCB
18.	Disc, Spacer	Stainless Steel ASTM A240 UNS S31600
19.	Seal, Lower	PTFE
20.	Cap, Body	Stainless Steel ASTM A351 Grade CF8M
21.	Lockwasher (4)	Stainless Steel Type 304 18-8
22.	Screw, Hex (4)	Stainless Steel Type 304 18-8

NIBCO HPBFV REPLACEMENT PARTS

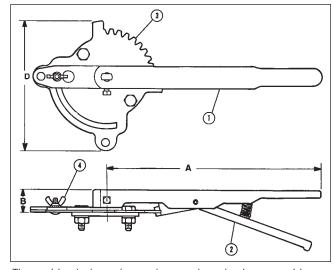
LCS6822 SERIES CLASS	GEAR OPERATOR KIT		HANDWHEEL		HANDWHEEL PIN		STEM BUSHING / KEY		LEVER HANDLE KIT	LEVER BUSHING	STEM SEAL KIT	RPTFE SEAT (only)
150	RATIO	PART NO. NUMBER	SIZE	PART NO. NUMBER	SIZE	PART NO. NUMBER	SIZE	PART NO. NUMBER	PART NO. NUMBER	PART NO. NUMBER	PART NO. NUMBER	PART NO. NUMBER
2"	24:1	RG70001	8" OD X .625" BORE		Ø.190" X 1.63" LONG		Ø.500 X .375 FLATS	DIRECT	RG70031	RG70034	RG700110	RG700080
2½"	24:1		8" OD X .625" BORE		Ø.190" X 1.63" LONG		Ø.625 X .438 FLATS					RG700081
3"	24:1	RG70002	8" OD X .625" BORE	RG70014	Ø.190" X 1.63" LONG		Ø.625 X .438 FLATS	RG70022	RG70032	DIRECT	RG700111	RG700082
4"	24:1		8" OD X .625" BORE	11070014	Ø.190" X 1.63" LONG		Ø.625 X .438 FLATS					RG700083
5"	24:1	RG70003	8" OD X .625" BORE		Ø.190" X 1.63" LONG	RG700130	Ø.750 X .500 FLATS	RG70023	RG70033	DIRECT	RG700112	RG700084
6"	24:1	11070003	8" OD X .625" BORE		Ø.190" X 1.63" LONG		Ø.750 X .500 FLATS	11070023	11070033	DINLUI	RG700113	RG700085
8"	30:1	RG70004	12" OD X .750" BORE	RG70015	Ø.190" X 1.63" LONG		Ø.875 X .625 FLATS	RG70024			RG700114	RG700086
10"	30:1	RG70006	12" OD X .750" BORE	11070013	Ø.190" X 1.63" LONG		.250" X .250" X 2" LG.	RG70025			RG700115	RG700087
12"	50:1	RG70007	16" OD X .750" BORE	RG70016	Ø.190" X 1.63" LONG		.250" X .250" X 2" LG.				RG700116	RG700088
14"	50:1	RG70008	16" OD X .750" BORE		Ø.190" X 1.63" LONG		.312" X .312" X 2-1/4" LG.	RG70026			RG700117	RG700089
16"	80:1	RG70010	16" OD X 1.00" BORE	RG70017	Ø.380" X 1.81" LONG		.500" X .375" X 3" LG.	RG70028			RG700118	RG700090
18"	80:1	RG70011	20" OD X 1.00" BORE	RG70018	Ø.380" X 2.50" LONG		.500" X .375" X 3" LG.	11070020			110700110	RG700091
20"	320:1	RG70012	20" OD X 1.19" BORE		Ø.380" X 2.50" LONG	RG700131	.500" X .500" X 3" LG.	RG70029			RG700119	RG700092
24"	320:1	RG70013	20" OD X 1.19" BORE	RG70019	Ø.380" X 2.50" LONG		.750" X .500" X 4" LG.	RG70030			RG700120	RG700093
30"	320:1	RG70021	20" OD X 1.19" BORE		Ø.380" X 2.50" LONG		.866" X .788" X 5" LG.	RG700032			RG700121	RG7000940

LCS7822 SERIES CLASS	GEAR OPERATOR KIT		HANDWHEEL		HANDWHEEL	PIN	STEM BUSHING / KEY		LEVER HANDLE KIT	LEVER BUSHING	STEM SEAL KIT	RPTFE SEAT (only)
300	RATIO	PART NO. NUMBER	SIZE	PART NO. NUMBER	SIZE	PART NO. NUMBER	SIZE	PART NO. NUMBER	PART NO. NUMBER	PART NO. NUMBER	PART NO. NUMBER	PART NO. NUMBER
2"	24:1	RG70001	8" OD X .625" BORE		Ø.190" X 1.63" LONG		Ø.500 X .375 FLATS	DIRECT	RG70031	RG70034	RG700110	RG700080
21/2"	24:1		8" OD X .625" BORE		Ø.190" X 1.63" LONG		Ø.625 X .438 FLATS					RG700081
3"	24:1	RG70002	8" OD X .625" BORE	RG70014	Ø.190" X 1.63" LONG		Ø.625 X .438 FLATS	RG70022	RG70032	DIRECT	RG700111	RG700082
4"	24:1		8" OD X .625" BORE		Ø.190" X 1.63" LONG	RG700130	Ø.625 X .438 FLATS					RG700083
5"	24:1	RG70003	8" OD X .625" BORE		Ø.190" X 1.63" LONG		Ø.750 X .500 FLATS	RG70023	RG70033	DIRECT	RG700112	RG700084
6"	24:1	11070000	8" OD X .625" BORE		Ø.190" X 1.63" LONG		Ø.750 X .500 FLATS	11070023	11070033	DINLUI	RG700122	RG700085
8"	30:1	RG70005	12" OD X .750" BORE	RG70015	Ø.190" X 1.63" LONG		.250" X .250" X 2" LG.	RG70025			RG700123	RG700095
10"	50:1	RG70008	16" OD X .750" BORE	RG70016	Ø.190" X 1.63" LONG		.312" X .312" X 2-¼" LG.	RG70026			RG700124	RG700096
12"	80:1	RG70009	16" OD X 1.00" BORE	RG70017	Ø.380" X 1.81" LONG		.375" X .375" X 3" LG.	RG70027			RG700125	RG700097
14"	80:1	RG70010	16" OD X 1.00" BORE	Nu/001/	Ø.380" X 1.81" LONG		.500" X .375" X 3" LG.	RG70028			RG700126	RG700098
16"	320:1	RG70020	20" OD X 1.19" BORE		Ø.380" X 2.50" LONG	RG70021	.500" X .375" X 3" LG.				RG700127	RG700099
18"	320:1	RG70013	20" OD X 1.19" BORE	RG70019	Ø.380" X 2.50" LONG	11070021	.750" X .500" X 4" LG.	. RG70030			RG700128	RG700100
20"	320:1	11070013	20" OD X 1.19" BORE		Ø.380" X 2.50" LONG		.750" X .500" X 4" LG.				110700120	RG700101
24"	320:1	RG70021	20" OD X 1.19" BORE		Ø.380" X 2.50" LONG		.866" X .788" X 5" LG.	RG700032			RG700129	RG700102


NOTES

- 1. Replacement Gear Operators includes Handwheel, Handwheel Pin, 4 Cap Screws, 4 Lock Washers, Key and Stem Bushing (if required) for mounting to BFV.
- 2. Stem Seal Kit includes Upper Packing Set, Packing Retainer, and Lower Body Cap Seal.
- 3. Lever Handle Kit includes Handle, Throttle Plate, Lockwashers, Bolts, and Bushing (if required).

Options and Accessories Index


Operators	Page
Lever-Lock	
Gear	
Stem Extensions, Silcone Free Issue	

Lever-Lock Operator (Standard) LD/WD2000/3000/5022

The lever-lock handle and throttling plate provide throttling notches every 10° for excellent manual control in balancing up to 90° or shut off service. The valve may be padlocked in any one of the positions including opened or closed by virtue of a locking hole located in the handle and lever.

Position-Lock Operator (Optional) LD/WD2000/3000/5022

The position-lock can be used to set the valve in any position or as a memory stop so the valve may be reopened to the previous position. The valve may be padlocked in full open or full closed position.

Ordering: Sold as a field retrofitable kit only.

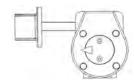
MATERIAL LIST

PART	SPECIFICATION	
1. Handle	Polymer Coated Iron	
2. Lever-Lock	Zinc Plated Steel	
3. Throttle Plate	Zinc Plated Steel	

DIMENSIONS AND TORQUE OUTPUT

LD/WD Valve	FC/FD GD Valve	Lever	Throttle Plate	Throttle Plate/		Din	nensions		Torque Rated Output in Inch-Pounds			
Size	Size	(STD)	(STD)	Infinite Pos. Kit	Α	В	C	D	At 60 pounds Pull	At 100 pounds Pull		
2"		T115106PP	T115138PP	T114840FG	10 1/2	1	4 5/8	6 3/16	540 In-Lbs.	900 In-Lbs.		
2 1/2" - 3'	2", 2 1/2", 3"	T115107PP	T115138PP	T114841FG	10 1/2	1	4 5/8	6 3/16	540 In-Lbs.	900 In-Lbs.		
4"		T115108PP	T115138PP	T114842FG	10 1/2	1	4 5/8	6 3/16	540 In-Lbs.	900 In-Lbs.		
	4" - 5"	T118496PP	T115138PP	T114843FG	10 1/2	1	4 5/8	6 3/16	540 In-Lbs.	900 In-Lbs.		
5" - 6"		T115109PP	T115138PP	T114843FG	13 3/4	1	4 5/8	6 3/16	735 In-Lbs.	1225 In-Lbs.		
8"	6"	T115110PP	T115138PP	T114844FG	13 3/4	1	4 5/8	6 3/16	735 In-Lbs.	1225 In-Lbs.		

^{*}Lever operators not recommended for 8, 10, and 12" valves due to torque loads.

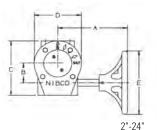

DIMENSIONS AND TORQUE OUTPUT

LCS 6822 Class 150	LCS 7822 Class 300	LEVER	Α	В	C & D	@ 60 LBS. PULL	@ 100 LBS. PULL
2"	2"	RG70031 & RG70034 Bushing	13.75"	1.25"	N/A	735 In-Lbs.	1225 In-Lbs.
2 1/2" - 4"	2 1/2" - 4"	RG70032	13.75"	1.25"	N/A	735 In-Lbs.	1225 In-Lbs.
5" - 6"	5" - 6"	RG70033	13.75"	1.25"	N/A	735 In-Lbs.	1225 In-Lbs.

Butterfly Valves Options and Accessories

Gear operator options and accessories (2" through 12" 2000/3000/5022 Series commercial valves).

2" Square Operating Nut



Flag Indicator

Cast Iron Gear Operator

The NIBCO® butterfly valve can be provided with heavy-duty operator and indicator. Recommended for valves 8" and larger, for trouble-free operation in all moisture and weather conditions (not submersible). Operator is a self-locking worm gear type. **Equipped with adjustable stops at open and shut positions.** Ordering: Specify by adding (-5) to Fig. No., i.e., WD2000-5. Babbit Sprocket may be added to handwheel. See below for sizing information. Available options: Memory Stop Gear Operator Kit, 2" Square Operating Nut, Flag Indicator and Handwheel for GO.

	GEAR OPERATOR DETAIL FOR SIZES 2" TO 24" (LCS6822 & LCS7822)*												GEAR OPERATOR ACCESSORIES & REPLACEMENT PARTS			
LCS6822 CL 150	LCS7822 CL 300	GEAR OPERATOR	RATIO	GEAR OP		DIME	NSION	IS (INC	HES)		STEM Adapter	SPROCKET RIM	REPLACEMENT HANDWHEEL			
HPBFV	HPBFV	NUMBER		WEIGHT	Α	В	C	D	E	F	BUSHING	MODEL	HANDWHEEL			
2"	2"	RG70001	24:1	12	5.77	1.73	5.07	4.00	8.00	2.65	DIRECT	#2	RG70014			
2½", 3", 4"	2½", 3", 4"	RG70002	24:1	12	5.77	1.73	5.07	4.00	8.00	2.65	RG70022	#2	RG70014			
5", 6"	5", 6"	RG70003	24:1	12	5.77	1.73	5.07	4.00	8.00	2.65	RG70023	#2	RG70014			
8"	-	RG70004	30:1	26	9.50	2.50	6.90	6.00	12.00	3.00	RG70024	#21/2	RG70015			
-	8"	RG70005	30:1	26	9.50	2.50	6.90	6.00	12.00	3.00	RG70025	#21/2	RG70015			
10"	-	RG70006	30:1	26	9.50	2.50	6.90	6.00	12.00	3.00	RG70025	#21/2	RG70015			
-	10"	RG70008	50:1	37	9.00	3.00	7.80	6.70	16.00	3.00	RG70026	#3.5	RG70016			
12"	-	RG70007	50:1	37	9.00	3.00	7.80	6.70	16.00	3.00	RG70025	#3.5	RG70016			
-	12"	RG70009	80:1	72	10.75	4.75	11.50	10.25	16.00	4.40	RG70027	#3.5	RG70017			
14"	-	RG70008	50:1	37	9.00	3.00	7.80	6.70	16.00	3.00	RG70026	#3.5	RG70016			
16"	-	RG70010	80:1	72	10.75	4.75	11.50	10.25	16.00	4.40	RG70028	#3.5	RG70017			
18"	-	RG70011	80:1	74	10.75	4.75	11.50	10.25	20.00	4.40	RG70028	#4	RG70018			
20"	-	RG70012	320:1	200	15.51	6.06	17.00	11.81	20.00	6.46	RG70029	#4	RG70019			
24"	-	RG70013	320:1	200	15.51	6.06	17.00	11.81	20.00	6.46	RG70030	#4	RG70019			

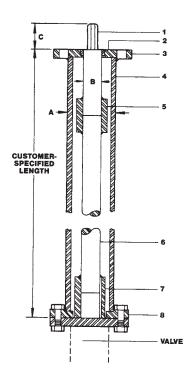
* No square operating nuts, flag indicators, or memory stop kits are available for LCS6822 and LCS7822 butterfly valves.

GE	GEAR OPERATOR DETAIL FOR SIZES 2" TO 48" (1000/2000/3000/5022)										GEA	R OPERAT	OR ACCESSO	RIES & REP	LACEMENT	PARTS
LD / WD VALVE SIZE	FC / FD / GD VALVE SIZE	GEAR OPERATOR NUMBER	RATIO	GEAR OP WEIGHT		DIMEN B	SIONS	(INCH	ES)	F	STEM ADAPTER BUSHING	SPROCKET RIM MODEL	SQUARE OPERATING NUT	FLAG INDICATOR	MEMORY STOP KIT	REPLACEMENT HANDWHEEL
2"	-	T117118PP	24:1	10	7.64	1.77	5.04	4.24	5.91	2.79	T046652PP	#1½	T117792FC	T116682PP	T026196PP	T117122PP
2½"- 3"	2"-2½"-3"	T117118PP	24:1	10	7.64	1.77	5.04	4.24	5.91	2.79	T046653PP	#1½	T117792FC	T116682PP	T026196PP	T117122PP
4"	-	T117118PP	24:1	10	7.64	1.77	5.04	4.24	5.91	2.79	T046654PP	#1½	T117792FC	T116682PP	T026196PP	T117122PP
5"- 6"	4"- 5"	T117118PP	24:1	10	7.64	1.77	5.04	4.24	5.91	2.79	T046655PP	#1½	T117792FC	T116682PP	T026196PP	T117122PP
-	6"	T117118PP	24:1	10	7.64	1.77	5.04	4.24	5.91	2.79	T046655PP	#1½	T117792FC	T116682PP	T026196PP	T117122PP
8"	8"	T117119PP	24:1	14	9.53	1.77	5.04	4.24	9.84	2.79	T046656PP	#21/2	T117792FC	T116682PP	T026196PP	T117123PP
10"	-	T117120PP	30:1	23	11.54	2.48	6.93	6.06	9.84	3.26	-	#21/2	T117793FC	T116682PP	T026197PP	T117124PP
12"	10"- 12"	T117121PP	30:1	23	11.54	2.48	6.93	6.06	9.84	3.26	-	#21/2	T117793FC	T116682PP	T026197PP	T117124PP
14"	-	T116697PP	50:1	26	12.87	3.08	7.48	6.28	11.81	3.26	-	#21/2	T117793FC	T116682PP	T026198PP	T117169PP
16"	-	T026150PP	80:1	58	13.58	4.72	10.24	9.84	11.81	4.27	-	#21/2	T118099FC	T116682PP	T026199PP	T026131PP
18"	-	T026151PP	80:1	57	15.04	4.72	10.24	9.84	15.75	4.27	-	#3½	T118099FC	T116682PP	T026199PP	T026142PP
20"	-	T026211PP	291:1	90	18.11	4.13	11.42	9.84	11.81	5.24	-	#21/2	T118099FC	T116682PP	T026199PP	T026131PP
24"	-	T026212PP	291:1	90	18.11	4.13	11.42	9.84	11.81	5.24	-	#21/2	T118099FC	T116682PP	T026199PP	T026131PP
30"	-	T117841PP	540:1	174	13.23	5.98	15.16	11.81	15.75	6.54	-	#3½	-	-	-	T1443627PP
36"	-	-	648:1	332	15.71	8.46	20.40	17.17	15.75	7.83	-	#3½	-	-	-	T1443627PP
42"	-	-	800:1	510	17.17	14.21	21.02	19.69	17.72	11.85	-	#3½	-	-	-	T1443629PP
48"	-	-	800:1	510	17.17	14.21	21.02	19.69	17.72	11.85	-	#3½	-	-	-	T1443629PP

Notes

- 1. Gear operator comes with handwheel. Larger sizes come with handwheel unattached. Pin is taped to handwheel.
- 2. Stem adapter bushing must be ordered seperately when needed for smaller size valves.
- 3. All other accessories must be ordered separately.

(Sprocket rim, square operator nut, flag indicator & memory stop kit.)


Butterfly Valves Options and Accessories

Stem Extensions

Stem extensions can be furnished to permit remote operation of butterfly valves in any required length. The top flange of an extension stem, plug shaft diameter, and distance across flats on plug shaft are the same size as the valve selected. This allows interchangeability of gear operators, actuators, and adapter bushings from valve mounting flange to extension stem top flange. When ordering, specify valve size, figure number, and the exact distance from the valve flange to the top of extension flange (customer-specified length shown at right). Stem extensions are available in lengths up to 10 feet. For stem extensions in excess of 10 feet consult factory.

See NIBCO Fire Protection catalog for wall post and ground post information.

Some High Performance Valves will require stem extensions for adequate chain clearance. Contact NIBCO Tech Services.

MATERIAL LIST

	PART	SPECIFICATION
1.	Plug	Steel
2.	Top Flange Bushing	Bronze
3.	Top Flange	Steel
4.	Housing (Steel Pipe)	Steel
5.	Plug and Rod Coupling	Steel
6.	Rod	Steel
7.	Rod and Stem Coupling	Steel
8.	Bottom Flange	Steel

DIMENSIONS

2"-12" 2.88 1.125 1.12	SIZE	Α	В	С
	2"-12"	2.88	1.125	1.12

14"-24" consult NIBCO Technical Services

NOTE: extension length limited by "B" dimension

Adjustable Sprocket Rim

The Babbitt Adjustable Sprocket Rim will provide for remote operation of butterfly valves in high, normally out-of-reach locations. When ordering specify either the sprocket and chain number or the NIBCO valve figure number and size. The chain length must also be specified. (Chain length is determined by Height x 2 + 2 ft.)

Babbitt Adjustable Sprocket Rims installed in overhead locations may require a secondary retention harness. It is the responsibility of the installer to determine need for such devices. For those locations use The Babbitt Safety Wheel Cap Kit. The kit contains a ductile iron cap, four stainless steel clamps, a stainless steel cable, and screws to secure the sprocket and hand wheel to a nearby pipe or structural member.

DIMENSIONS - SPECIFICATIONS

		Sprocket		HDWL	Chain	Weight	Butterfly
	Size	Wheel	Weight	Rim	Size	per 100'	Valve
	No.	in Inches	in Lbs.	Will Fit	No.	in Lbs.	Size
	1	5 7/8	4	4 1/8 to 5 7/8	1/0	17 1/2	_
	1 1/2	7 1/2	5	6 to 7 1/2	1/0	17 1/2	2-6"
	2	9	8	7 3/4 to 9	1/0	17 1/2	_
	2 1/2	12 1/2	15	9 1/2 to 12 1/2	4/0	30	8-16",
							20", 24"
	3	15 1/2	21	12 3/4 to 15 1/2	4/0	30	_
	3 1/2	19	25	15 3/4 to 19	4/0	30	18", 30"- 48"
	4	22	34	19 1/4 to 22	5/0	35	_
1							

Size No.	Harness Kit	Chain Masterlink	Chain No.
1	RG00SH01		
1.5	nduusnui	RG00ML1	RG00280
2			
2.5	RG00SH25		
3]	RG00ML25	RG00480
3.5	RG00SH35		
4	ทินเกรนรอ	RG00ML4	RG00630

No Silicone Used - Silicone Free Issue

All butterfly valves may incorporate the use of silicone in either grease or aerosol form during the assembly. LD/WD/GD series butterfly valves can be special ordered as "Assemble-Dry" without test. These valves will not be assembled using silicon in the form of grease or aerosol spray.

Note: Even though provisions are made to assemble valves and not incorporate the use of silicone lubricants, the potential for it to be present as air-borne particles prevents us from certifying that our valves are 100% silicone free

Engineering Data Index

	Page
Specifications	54-55
Flow Data	56-57
Property of Materials	58-61
Technical Information — Butterfly Valves	
Dimensional Requirements of Flange/Pipe Connectio	ns62
Installation Guide	
Capscrew & Bolt Data	
Gear Operator Installation	64-65
Resilient Liner Materials	
Metals Used in Valves & Fittings	
Torque Data	
Actuation Data Sheet	
Figure Number Comparison Chart	

Specifications

NIBCO® butterfly valves are designed and manufactured to give maximum performance on recommended service at the lowest possible initial and upkeep cost. They are designed to meet standards, codes, and/or specifications, as noted.

American Petroleum Institute

API-609 DESIGN

Manufacturers Standardization Society of the Valve and Fitting Industry, Inc.

MSS SP-25, MSS SP-67 (shell test performed upon request), MSS SP-68

United States Coast Guard — CG190

Now called "CIMDTINST — M16714.3"

"Equipment list"

"Items approved, certified or accepted under Marine Inspection and Navigation Laws"

NIBCO valves, fittings and flanges are listed in this document.

Code of Federal Regulations Title 46 Shipping Parts 41 to 69

The Code of Federal Regulations is a codification of the general and permanent rules published in the Federal Regulations by the Executive Departments and Agencies of the Federal Government.

This regulation is constantly revised to reference the latest ANSI, ASTM & MSS Standards _____

NIBCO 2000 and 3000 services have been designated as suitable for Category A service.

NAVY — APL, CID, NSN

"Department of the Navy"

"Navy Ships Parts Control Center"

Mechanicsburg, PA

The Department of the Navy, when using standard commodity type valves, assigns APL-CID numbers to each individual valve manufactured by a company. Valves of the same figure number, but of different size get different CID numbers.

The (APL) Allowance Parts List, (CID) Code Identification Numbers and (NSN) National Stock Numbers are used by the Navy in the Parts Control Center to order replacement valves or parts of valves that are installed on board United States Navy vessels.

When a Navy vessel is being built, the shipyard doing the construction must apply to the Parts Control Center for CID numbers for all valves before the Navy will accept delivery of the vessel.

On many NIBCO valves, the CID and NSN numbers have been assigned. Consult NIBCO for more information.

Specifications (continued)

American Bureau of Shipping — Rules for Building

The American Bureau of Shipping states in Article 36.15.1; All valves are to be constructed and tested in accordance with a recognized standard, such as ANSI, MSS or other, acceptable to the Bureau. They are to bear the trademark of the manufacturer legibly stamped or cast on the exterior of the valve, as well as the pressure rating class for which the manufacturer guarantees the valve will meet the requirements of the standards.

The following NIBCO butterfly valves are manufactured in facilities approved by ABS for marine service: LD or WD 2000 and 3000 series.

ABS Certificate No.: 00N09621-X Manufacturers Federal Code: NIBCO — 12168

LLoyd's Register of Shipping

NIBCO is an approved manufacturer of grey and ductile iron butterfly valves.

Det Norske Veritas

NIBCO® DI Butterfly valves are in compliance with DNV Rules for classification of ships and mobile offshore units. DNV standards for Certification 2.09 No. 101. approved for fresh water, sea water, sanitary water, water ballast, cargo oil transfer and bilge lines

Sample Butterfly Valve Specification

Line Control Valves 2" or larger

Butterfly Valves: Valve shall be full lug or wafer body style. Valves designed to comply with MSS SP-67 Standard. The valves shall be rated at least 200 PSI (2" - 12") and 150 PSI (14" - 48") bi-directional differential pressure. **Body** to have 2" extended neck for insulation and **shock resistant ductile iron**. Valves to have aluminum bronze disc and **molded in or cartridge seat** of EPDM rubber. Stem shall be 400 series stainless steel. Top and bottom stem bushings of dissimilar material are required with a positive stem retention mechanism. Sizes 2" - 6" shall be lever operated with a 10 position throttling plate; sizes 8" and larger shall be gear operated. **Lug style valves shall be capable of providing bi-directional "Dead End Service" minimally at 200 PSI (2-12"), 150 PSI (14"-24"), 100 PSI (30"-48") without the need for down stream flange.**

Acceptable valves:

NIBCO LD-2000 (2" - 12"), LD-1000 (14" - 48")

Flow Data C_v Values for Valves

Liquid Flow:

$$Q = C_v \sqrt{\frac{\Delta P}{S}}$$
 or $\Delta P = S \left(\frac{Q}{C_v}\right)$

 $\begin{array}{ll} \text{where} \dots \, \mathsf{Q} = & \text{flow rate (gallons per minute)} \\ \Delta \mathsf{P} = & \text{pressure drop across valve (psi)} \\ \mathsf{S} = & \text{specific gravity of media} \end{array}$

This equation is good for turbulent flow and for liquids with viscosities near that of water.

(Cv is defined as the flow in GPM that a valve will carry with a pressure drop of 1.0 psi when the media is water at 60° F.) (The specific gravity of water is 1 (one).)

						-											
Valve Size																	
Size (mm.)	4	8	10	15	20	25	32	40	50	65	80	90	100	125	150	200	
Size (In.)	1/8	1/4	3/8	1/2	3/4	1	1 1/4	1 ½	2	2 1/2	3	3 1/2	4	5	6	8	
GATES																	
S/T-29	0.5	2	4.9	9.1	22	40	65	95	175								
S/T-111, 113, 131, 133 134, 136, 154, 174, 176	_	5.6	10.7	17.6	32	54	97	135	230	337	536	710	960	1,525	2,250		
T/F-617, 619, 667, 669, 607, 609 F-637, 639									215	335	510	710	945	1,525	2,250	4,150	
GLOBES																	
S/T-211, 235, 256 275-Y	0.61	1.16	2.2	3.64	6.65	11.1	20	28	48	70	111	_	198				
T-275-B		1.16	2.21	3.64	6.65	11.1	20	28	48	70	111						
F-718, F-738									45	70	105	_	195	315	465	860	
CHECKS																	
S/T-413, 433, 473 (Swing)		1.3	2.5	4.8	14.3	24	43	60	102	150	238	315	435	675	1,000		
S/T-480 (Poppet)		_	3.7	6.86	16.3	30	49	72	130								
F-908 (Swing)										243	356	_	665	1,073	1,584	2,937	
T/F-918, 968, 938 (Swing)									137	221	327		605	975	1,440	2,670	
KW-900-W						-			60	105	184	_	354	577	801	1,500	-
F-910, 960 (Poppet)										110	155		278	431	625	1,115	
W-910, 960 (Poppet)									66	88	130	_	228	350	520	900	
G-920-W									77	129	209	_	358	573	898	1,740	
W-920-W									76	161	224		400	648	1060	1,890	
BALL																	
F-510, 530			_	11	25	45		137	217		482	_	790	_	1,144	2,164	
F-515, 535		_	_	25	50	85		259	440	840	1,400		2,350	_	5,200	10,200	
F-565		_	_	_	_	75		235	400	_	1,180		2,040	_	_		
T-560-BR/CS/S6		4	4	5	12	22	35	52	95	_	_						
T-570		_	_	7	12	25	38	52	95	_	_						
T/S-580		_	_	5.8	13.9	27	44	64	100	_	_						
T/S-580-70		_	_	_	_		38.5	76	101.4	183	390						
T/S-585-70		4.2	6.2	15.3	30.4	48.8	103	143	245	_							
TM-585-70-66		_	_	15.3	30.4	48.8	103	143	245	_	_						
AT-585-70-66		_	_	_	_	_	_	_	_	183	_						
T-580-70-W3			_	_	_	_	21.6	38	48.5	_	_						
T/S-585-70-W3		_	_	6	12	19.5	_	_		_	_						
T-580 (CS-S6)		6	12	15	23	36	44	64	114	_							
T/S-590-Y		_		_	_		44	64	100	183	390						
T/S-595-Y	_	5.9	11.4	18.7	34	57	103	143	245	310	_						
TM/KM-595 (CS-S6)		6	12	19	37	64	103	143	245		_						
T/K-595 (CS-S6)	_	6	12	19	37	64	103	143	245	_	_						
BUTTERFLY																	
LD/WD-1000, 2000, 3000, 5000									166	247	340	_	660	1,080	1,613	3,759	
GD-4765, 4775 FC-2700, FD-5700									145	195	290	_	600	930	1,600	3,450	
			_														

NOTE: flow data for angle valves use globe Cv times 1.25: Bronze Angles — 311, 335, 375, 376-AP Iron Angles — 818, 869, 831

Gas Flow:

$$Q = 1360 C_V \sqrt{\frac{\triangle P \times P_1}{ST}}$$

where . . . Q = gas flow (SCFH—std. cu. ft/hr)
S = specific gravity of gas (air = 1.0)
T = temp—degrees Rankine (°F + 460)
ΔP = pressure drop across valve (psi)

P1 = upstream pressure (psia) absolute

NOTE: $\triangle P$ must be less than .5 P1. (Flow is critical when $\triangle P$ is

greater than .5 P1.)

									For	throttl	ing us	with	disc p	ng l artiall lves ar	y open	. Mult	iply Cv	by fac	ctor.
250	300	350	400	450	500	600	750	900											
10	12	14	16	18	20	24	30	36	0	10	20	30	40	50	60	70	80	90	100
										,									
6,700	9,925	13,800	18,375	23,600	29,600	43,570													
									0	0.35	0.65	0.90	0.93	0.96	0.98	0.99	1.00	1.00	1.00
1,390									0	0.030	0.035	0.06	0.10	0.16	0.24	0.32	1.00	1.00	1.00
 1,390									U	U. პ ზ	ี ซื้อ.บ	U.SU	บ.ฮ3	U.9b	บ.9ช	U.99	1.00	1.00	1.00
													W	/ARNIN	G				
4700	0.005											,							
4,730	6,985													ained h					
										They	are, the	eretore	, appro	ximatic	ıns and	canno	t be use	ed for	
4,300	6,350									11.0						1.00			
2,357	3,742									_	ly critic	al flow		ssure d					
2,357 1,770		3400	4400	5600	6900	10000	15400	22400		precis	ly critic e flow	al flow measur	ement	s, tests	must b	e cond	ucted o	n any	
2,357	3,742	3400	4400	5600	6900	10000	15400	22400		precis valve n	ly crition e flow nention	al flow measur ed with	ement nin this	s, tests catalo	must b g. Thro	e cond ttling o	ucted of f ball va	on any alves is	
2,357 1,770	3,742	3400	4400	5600	6900	10000	15400	22400		precis valve n	ly crition e flow nention	al flow measur ed with	ement nin this	s, tests	must b g. Thro	e cond ttling o	ucted of f ball va	on any alves is	
2,357 1,770 1,450	3,742 2,500	3400 5,700	4400 7,200	5600 9,400	6900	10000	15400 33,000	22400 50,000		precis valve n	ly crition e flow nention	al flow measur ed with	ement nin this	s, tests catalo	must b g. Thro	e cond ttling o	ucted of f ball va	on any alves is	;
2,357 1,770 1,450 3,180	3,742 2,500 4,950								0°	precis valve n	ly crition e flow nention	al flow measur ed with	ement nin this	s, tests catalo	must b g. Thro	e cond ttling o	ucted of f ball va	on any alves is	90°
2,357 1,770 1,450 3,180	3,742 2,500 4,950								0°	precis valve n not	ly critic e flow nention recom	al flow measur ed with mender	rement nin this d when	s, tests catalo valves	must b g. Thro are les	ne cond ttling o	ucted of f ball va 45° op	on any alves is en.	,
2,357 1,770 1,450 3,180 3,340	3,742 2,500 4,950 5,270									precis valve n not	ly critic e flow nention recom	al flow measur ed with mended	rement nin this d when 40°	s, tests catalog valves	must b g. Throi are les	oe cond ttling of ss than	ucted of ball value 45° op	on any alves is en.	90°
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0	precis valve n not	ly critic e flow nention recom 20°	al flow measured with mender 30° 0.16	rementation this distributed when the distributed with the distributed w	s, tests catalog valves 45° 0.37	must by Thron are less 50° 0.45	ttling of state of the conditions of the conditi	ucted of ball value 45° op 70° 0.71	on any alves is sen. 80° 0.87	90°
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0	precis valve n not 10° 0.01	ly critice e flow nention recommends recommends 0.05	al flow measured with mender 30° 0.16	rement. nin this d when 40° 0.3 0.3	s, tests catalog valves 45° 0.37 0.37	must b g. Throf are les 50° 0.45 0.45	ope condititing of states than 0.58 0.58	ucted of ball value 45° op 70° 0.71	on any alves is sen. 80° 0.87 0.87	90° 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0 0	precis valve n not 10° 0.01 0.01 0.01	20° 0.05 0.05 0.05	30° 0.16 0.16 0.16	40° 0.3 0.3 0.3	45° 0.37 0.37 0.37	must b g. Thron are les 50° 0.45 0.45 0.45	60° 0.58 0.58 0.58	70° 0.71 0.71 0.71	80° 0.87 0.87 0.87	90° 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0 0 0 0	precis valve n not not not not not not not not not n	lly critic e flow nention recom 20° 0.05 0.05	al flow measured with mender 30° 0.16 0.16	rement in this d when 0.3 0.3 0.3	45° 0.37 0.37	must b g. Throto are less 50° 0.45 0.45	60° 0.58 0.58 0.58 0.58	70° 0.71	80° 0.87 0.87	90° 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0 0 0 0 0	precis valve n not 10° 0.01 0.01 0.01 0.01 0.01 0.01	20° 0.05 0.05 0.05 0.05 0.05	al flow measured with mender 30° 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	40° 0.3 0.3 0.3 0.3 0.3	45° 0.37 0.37 0.37 0.37 0.37	must kg. Throis are less 50° 0.45 0.45 0.45 0.45 0.45 0.45	60° 0.58 0.58 0.58 0.58 0.58	70° 0.71 0.71 0.71 0.71 0.71	80° 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0 0 0 0 0	precis valve n not 10° 0.01 0.01 0.01 0.01 0.01 0.01	20° 0.05 0.05 0.05 0.05 0.05	30° 0.16 0.16 0.16 0.16 0.16	40° 0.3 0.3 0.3 0.3 0.3 0.3	45° 0.37 0.37 0.37 0.37 0.37 0.37	must k g. Throf are les 50° 0.45 0.45 0.45 0.45 0.45 0.45	60° 0.58 0.58 0.58 0.58 0.58 0.58	70° 0.71 0.71 0.71 0.71 0.71 0.71 0.71	80° 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0 0 0 0 0 0	preciss valve n not 10° 0.01 0	20° 0.05 0.05 0.05 0.05 0.05 0.05 0.05	30° 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	40° 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	45° 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	must kg. Throft are less 50° 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	60° 0.58 0.58 0.58 0.58 0.58 0.58 0.58	70° 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	80° 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0 0 0 0 0 0 0	preciss valve n not 10° 0.01 0.	20° 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	30° 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	40° 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	45° 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	must b g. Throto are less 50° 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	60° 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58	70° 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	80° 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0 0 0 0 0 0 0	preciss valve n not 10° 0.01 0.	20° 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	30° 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	40° 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	45° 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	must b g. Throto are less 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	60° 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58	70° 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	80° 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0 0 0 0 0 0 0 0	preciss valve n not 10° 0.01 0.	20° 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	al flow measured with mender w	### Remember the interval of t	45° 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	must b g. Throft are less 50° 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	60° 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58	70° 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	80° 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0 0 0 0 0 0 0 0 0	precisival valve not	20° 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	30° 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	40° 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	45° 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	must b 3. Throi are less 50° 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	60° conditing of six than 60° conditing of six than 60° conditions of six t	70° 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	80° 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0 0 0 0 0 0 0 0 0	precision precis	20° 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	30° 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	40° 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	45° 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	must b 3 J. Throid are less 1 Superior 1 Sup	60° 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58	### Company of Company	80° 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0 0 0 0 0 0 0 0 0 0	precision precis	20° 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	30° 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	40° 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	45° 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	must b 3. Throid are less 50° 0.45 0.	60° 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58	### Control of the co	80° 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0 0 0 0 0 0 0 0 0 0 0	precision precis	20° 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	30° 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	### doi: 10.00 ### do	45° 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	must k 3. Throit are less 50° 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	60° 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58	70° 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	80° 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0 0 0 0 0 0 0 0 0 0 0 0 0	precision precis	20° 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	30° 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	### domain this display when the sement thin the sement the s	45° 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	must k 3. Throit are less 50° 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	60° conditing of strength of the conditing of strength of the condition of	70° 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	80° 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0 0 0 0 0 0 0 0 0 0 0	precision precis	20° 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	30° 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	### doi: 10.00 ### do	45° 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	must k 3. Throit are less 50° 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	60° 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58	70° 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	80° 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0 0 0 0 0 0 0 0 0 0 0 0 0	precision precis	20° 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	30° 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	### domain this display when the sement thin the sement the s	45° 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	must k 3. Throit are less 50° 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	60° conditing of strength of the condition of the conditi	70° 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	80° 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,357 1,770 1,450 3,180 3,340 3,507	3,742 2,500 4,950 5,270 5,516								0 0 0 0 0 0 0 0 0 0 0 0 0	precision precis	20° 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	30° 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	### domain this display when the sement thin the sement the s	45° 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	must k 3. Throit are less 50° 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	60° conditing of strength of the condition of the conditi	70° 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71	80° 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	90° 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Properties of Valve Materials

				NOMINAL OR MAXIMUM CHEMICAL COMPOSITION										
	ALLOY	ASTM NO.	OTHER ALLOY DESIGNATION	AL	CARBON C	CHROME Cr	COBALT	COPPER Cu	IRON Fe	LEAD Pb	MANGA- NESE Mn	MOLYB- DENUM Mo		
	Commercial Aluminum 380	SC 84 A (modified)	UNS A38000	87.0				1.0	1.3		.35			
	Free Cutting Brass	B 16	UNS C36000					61.5		3.0				
	Navy "M" (Steam Bronze)	B 61	UNS C92200	.005				88.0	.25	1.5				
	Composition Bronze (Ounce Metal)	B 62	UNS C83600	.005				85.0	.30	5.0				
	Copper-Silicon Alloy B	B 98/B 99	UNS C65100					96.0	.8	.05	.7			
ass	Forging Brass	B 124	UNS C37700					60.0	.3	2.0				
& Brass	Forging Brass	B 283	UNS C37700					58.0	.3	2.5				
	Brass Wire (Red Brass)	B 134	UNS C23000					85.0	.05	.05				
Bronze	Leaded Red Brass	B 140	UNS C31400					89.0	.10	1.9				
	Aluminum Bronze (Cast)	B 148	UNS C95400	11.0				85.0	4.0					
	Aluminum Bronze (Rod)	B 150	UNS C64200	7.0				91.0	.30	.05	.10			
	Silicon Red Brass	B 371	UNS C69400					81.5	.20	.30				
	Leaded Semi-Red Brass	B 584	UNS C84400	.005				81.0	.40	7.0				
	Leaded Red Brass		UNS C84500	.005				78.0	.40	7.0				
per	Leaded Nickel Bronze	B 584	UNS C97600					64.0		4.0				
Copper	Copper (Wrot)	B 75	UNS C12200					99.9						
	Gray Iron	A 126	Class B										_	
_	3% Ni Gray Iron	A 126 (modified)	Class B											
Iron	Austenitic Gray Iron (Ni-Resist)	A 436	Type 2		3.00	2.0		.5			1.0			
	Ductile Iron (Ferritic)	A 395			3.20									
	Austenitic Ductile Iron (Ductile) (Ductile) (Ni-Resist)	A 536 65-45-12 A 536 80-55-06 A 439 D2C			2.9	.5					2.4	1.0		

		NO	MINAL OR	MAXIMUM	СНЕМ	ICAL COM	POSITION		NOMINAL PHYSICAL PROPERTIES					
NICI N		PHOS P	SILICON Si	SULFUR S	TIN Sn	TITAN- IUM Ti	TUNG- STEN W	ZINC Zn	TENSILE STRENGTH Psi	YIELD STRENGTH Psi	% ELONGATION	HARDNESS		
.50)		12.0		.15			.50	42,000	19,000	3.5			
								35.5	50,000	20,000	15	75 HRB		
1.0)	.05	.005	.05	6.0			4.5	34,000	16,000	22	65 HB *500 kg		
1.0)	.05	.005	.08	5.0			5.0	30,000	14,000	20	60 HB 500 kg		
			1.6					1.5	86,000**	20,000	11	65 HRB		
								38.0	52,000	20,000	45	80 HRB		
								38.0	52,000	20,000	45	78 HRB		
								15.0	56,000			60 HRB		
.7								9.1	50,000	30,000	7	60 HRB		
									75,000	30,000	12	170 HB *3000 kg		
.25	5		2.0		.20			.50	90,000	45,000	9	80 HRB		
			4.0					14.5	80,000	40,000	15	85 HRB		
		.02	.005	.08	3.0			9.0	29,000	13,000	18	55 HB *500 kg		
1.0)	.02	.005	.08	3.0			12.0	29,000	13,000	16	55 HB *500 kg		
20.	0				4.0			8.0	40,000	17,000	10	80 HB		
		.02							36,000	30,000	25	45 T		
		.75		.15					31,000			195 HB		
3.0	0	.75		.15					31,000			195 HB		
20.	0		2.0	.12					25,000			118 HB		
		.08	2.50						60,000	40,000	18	167 HB		
24.	0	.08 .08 .08	2.50 2.50 3.0						65,000 80,000 58,000	45,000 55,000 28,000	12 6 20	160 HB 160 HB 146 HB		

*Load Applied During Testing **Allowable Range is 75,000 to 95,000

Properties of Valve Materials

					NO	MINAL OF	RMAXIM	IUM CHEN	/IICAL C	OMPOS	SITION		
	ALLOY	ASTM NO.	OTHER ALLOY Designation	CA AL	RBON C	CHROME Cr	COBALT Co	COPPER Cu	IRON Fe	LEAD Pb	MANGA- NESE Mn	MOLYB- DENUM Mo	
	Wrot 304 Cast 316	A 167 304 A 351 CF8M	UNS S30400 UNS S31600		.08 .08	19 20					2 1.5	2.5	
	Cast 316 Cast 316	A 743 CF16F A 743 CF8M			.16	20 20					1.5 1.5	1.5 2.5	
Steel	Wrot 316 Cast 410	A 276 316 A 217 CA 15	UNS S31600		.08 .15	17 13					2 1	2.5	
Stainless Steel	Forged 410 Wrot 410	A 182 F6A2 A 276 410	UNS S41000		.15 .15	13 13					1 1		
Sta	Wrot 416 Wrot 420	A 582 A 276 420	UNS S41600 UNS S42000		.15 .15	13 13					1.25 1		
	Cast Alloy 20 Wrot Alloy 20	A 743 CN7M B 473 20C63	UNS N08020		.07 .07	20 20		3.5 3.5			1.5 2	2.5 2.5	
	Wrot 17-4PH	A 564 630	UNS S17400		.07	16		3.5			1		
sls	Forged Carbon Steel Cast Carbon Steel Cast Carbon Steel	A 105 A 216 WCB A 216 WCC			.35 .3 .25						1 1.1 1.2		
Steels	1¼ Cast Cr. Moly Steel Cast Cr. Moly Steel	A 217 WC6 A 217 C5			.2 .2	1.2 5					.7 .55	.55 .55	
	Cast Low Carbon Steel Nickel-Low Carbon Steel	A 352 LCB A 352 LC2			.3 .25						1.0 .65		
	B-7 Alloy Steel Studs 304 SS Nuts	A 193 B7 A 194 GR8			.4 .08	1 19					.85 2	.2	
<u>s</u>	2-H Alloy Steel Nuts Reg. Steel Bolting	A 194 2H A 307 Gr. B			.4 .2						.45		
Trim Steels	Steel Bolting 304SS Bolting	A 449 A 493 304	UNS S30400		.4 .08	19					.6 2		
Trin	Eyebolts Gland Nuts	A 489 A 563 Gr. A			.48 .37	.55		.35			1.0 1.0		
	H/W Nuts Swing Bolt Pin	A 108 1020 A 108 1212	UNS G10200 UNS G12120		.20 .13						.45 .85		
	Yoke Bushing Caps Seat Ring Base	A108 12L14 A 519 1026			.15 .25					.25	1.0 .75		
Monel H.F.	(Trademark Materials like, Stellite 6*, Stoody 6, and Wallex 6)		AWS 5.13	1	1.25	29	55		2.5				
Ĭ	Cast Monel Wrought Monel (K-500)		QQ-N-288-E QQ-N-286-C1B	.5 3.0	.3 .1			30 24	3.5 2.0		1.5 1.5		

^{*}Trademark by Cabot Corp.

NOMINAL OR MAXIMUM CHEMICAL COMPOSITION								N	OMINAL PHYSIC	AL PROPERTIES	
NICKEL Ni	PHOS P	SILICON Si	SULFUR S	TIN Sn	TITAN- IUM Ti	TUNG- STEN W	ZINC Zn	TENSILE STRENGTH Psi	YIELD Strength Psi	% ELONGATION	HARDNESS
9 11	.045 .04	1.0 2.0	.03 .04					75,000 70,000	30,000 30,000	40 25	202 HB
11	.04	2.0	.04					70,000	30,000	30	
12	.045	1.0	.03					75,000	30,000	30	
12 1	.045 .04	1.0 1.5	.03 .04					75,000 90,000	30,000 65,000	30 18	
.5	.04 .04	1.0 1.0	.03 .03					85,000 100,000	55,000 80,000	18 15	200/225 HB
	.06 .04	1.0 1.0	.15 .03					114,000	95,000	17	235 HB 250/450 HB
28 35	.04	1.5 1.0	.04					62,000 85,000	25,000 35,000	35 30	
4	.043	1.0	.03					115,000	75,000	18	255 HB
	.04 .04 .04	.035 .6 .6	.05 .045 .04					70,000 70,000 70,000	36,000 36,000 40,000	22 22 22	187 HB
	.04	.06 .75	.045					70,000	40,000	22	
2.5	.04 .04	.6 .6	.045 .045					65,000 70,000	35,000 40,000	24 24	
9	.035 .045	.25 1.0	.04 .03					125,000	105,000	16	126/300 HB
	.04 .04		.05 .05					100,000		18	250/300 HB 121/212 HB
9	.04 .045	1.0	.05 .03					120,000 90,000	92,000	14	
.35	.04 .04	.25 .2	.05 .05					75,000	30,000	30	
	.04 .10		.05 .20								120/300 HB
	.07 .04		.3 .05					55,000	35,000	25	
3						5		105,000		10	350 HB
60		1.5						65,000	32,500	25	125/150 HB
67		.5	.01		.5			135,000	95,000	20	255 HB

DIMENSIONAL REQUIREMENTS OF FLANGE/ PIPE CONNECTIONS FOR NIBCO® RUBBER SEATED LUG & WAFER STYLE BUTTERFLY VALVES

NIBCO butterfly valves, depending on size and pressure rating, are designed to mate with ASME B16.1, ASME B16.5, ASME B16.42 & ASME B16.47 series A flanges. Cast iron and steel flat-face flanges can be used with all NIBCO butterfly valves however steel raised-face flanges should not be used with cast grey iron lug style butterfly valves (NIBCO LC2000 and N200 series). While flange standards specify flange OD, thickness, bolt size, bolt circle diameter, and number of bolts, they may not specify flange opening ID. Care must be used when selecting mating components for use with NIBCO lug and wafer style butterfly valves. **The internal diameter of flanges, fittings, and pipe must be compatible with the butterfly valve for proper seal and operation.** When in the open position, the disc extends outward from the valve body. The internal diameter of connecting components must be large enough allowing clearance for the disc to fully open. The below disc clearances are in accordance with Butterfly Valve Standard MSS SP-67, Table A1.

NIBCO 2" thru 48" size butterfly valves have an integral rubber face that seals to the attaching flange, therefore a separate gasket is not necessary and should not be used. The flange inside diameter must not be too large or it will not mate properly with the seal. See below for minimum and maximum inside diameters of connecting piping/flanges to assure proper seal and operation of butterfly valves. Verify the inside diameter and clearance dimensions of all components connecting directly to a butterfly valve.

LD/WD/LC/WC1000/2000/3000/5000 SERIES

VALVE SIZE	MINIMUM PIPE/FLANGE ID FOR DISC CLEARANCE	MAXIMUM FLANGE/PIPE ID FOR PROPER SEAL
2"	2.00"	2.49"
2 1/2"	2.37"	2.86"
3"	2.67"	3.43"
4"	3.69"	4.55"
5"	4.76"	5.62"
6"	5.84"	6.62"
8"	8.00"	8.62"
10"	10.00"	10.80"
12"	11.99"	13.12"
14"	13.02"	14.01"
16"	15.20"	16.30"
18"	17.09"	18.31"
20"	18.90"	20.08"
24"	23.05"	27.71"
30"	29.06"	30.29"
36"	33.59"	36.04"
42"	39.83"	42.77"
48"	44.85"	48.27"

These charts show the minimum and maximum inside diameters of connecting piping.flanges that will assure proper seal and operation with NIBCO butterfly valves. Verify the inside diameter and clearnace dimensions of all components connecting directly to the butterfly valve.

N200 SERIES

VALVE SIZE	MINIMUM PIPE/FLANGE ID FOR DISC CLEARANCE	MAXIMUM FLANGE/PIPE ID FOR PROPER SEAL
2"	1.38"	2.24"
2 1/2"	1.95"	2.74"
3"	2.66"	3.33"
4"	3.67"	4.55"
5"	4.48"	5.50"
6"	5.96"	6.66"
8"	7.85"	8.61"
10"	9.76"	10.75"
12"	11.72"	12.79"

Butterfly Valve Technical Information

Valve Installation Procedure - For Lug & Wafer Style Valves

Always position the connecting pipe flanges accurately in the line, allowing sufficient space between the flanges for the valve. Make sure the pipe flange faces are clean of any foreign material such as scale, metal shavings or welding slag. Valves should be installed with the disc in the closed position to prevent damage to sealing surfaces.

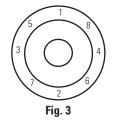
- 1. Carefully insert the valves between the pipe flanges. Do not apply any lubricants to the seat faces as this may damage them.
- Line up, center and secure the valve between flanges using desired bolts or studs as listed in Table 4. Do not tighten bolts at this time.
- 3. Carefully open the valve to assure free unobstructed disc movement. Disc interference may result when valves are installed in pipelines having smaller than normal inside diameters, such as heavy wall pipe, plastic-lined pipe, as-cast flanges or reducing flanges. Interference can also occur when connecting directly to a swing check or silent check. Suitable corrective measures must be taken to remove these obstructions, such as taper boring the pipe or installing a spacer or spool piece.
- After proper operation is verified, tighten the bolts to the minimum recommended bolt torques listed in Table 3 below using a cross-over pattern, also shown below in Figure 3.
- Pressurize piping to valve and inspect for leakage. If leakage is observed, tighten bolts using cross-over pattern, increasing torque until leak stops. DO NOT EXCEED MAXIMUM TORQUES LISTED IN TABLE 3.
- Recommended torques are made without warranty. Installer must verify proper strength bolts for application. Bolts shall be clean and un-lubricated.

NOTE: LUG STYLE VALVES - Extra care should be used when installing with raised face flanges.

Over-tightening can result in broken lugs.

Caution

- 1. Class 250 cast iron and Class 300 steel flanges can not be used on these valves.
- 2. Rubber faced or mechanical flanges are not recommended.
- 3. This valve is **not recommended** for steam service.
- 4. Valves should **not** be assembled to the flanges and then welded into the piping system.
- 5. Lever-lock handles are **not** recommended for use on 8" and larger valves due to torque loads.
- 6. Do not install EPDM liner in compressed air lines.


Table 4 Recommended Bolt Lengths

VALVE SIZE 1000/2000/3000 SERIES ONLY	TOTAL VALVE BODY WIDTH	ANSI B16.1 CLASS 125 CAST IRON FLANGE THICKNESS	ANSI B16.5 CLASS 150 STEEL FLANGE THICKNESS	ANSI B16.47 (SERIES A) CLASS 150 STEL MSS SP-44 FLANGE THICKNESS	RECOMMENDED CAP SCREW LENGTH (LUGGED VALVES) DIMENSION "Y"	RECOMMENDED BOLT LENGTH (WAFER VALVES) DIMENSION "X"	TOTAL QUANTITY CAP SCREWS/BOLTS (TO MOUNT 2 FLANGES)	CAP SCREW SIZE
2"	1.69	0.63	— 0.75		1.25 1.50	4.00 4.00	8/4 8/4	5/8-11 UNC
2 1/2"	1.81	0.69	0.88	_	1.50 1.75	5.00 5.00	8/4 8/4	5/8-11 UNC
3"	1.81	0.75	0.94	_	1.50 1.75	5.00 5.00	8/4	5/8-11 UNC
4"	2.06	0.94	0.94	_	1.75	5.00	16/8	5/8-11 UNC
5"	2.19	0.94	0.94	_	1.75	5.00	16/8	3/4-10 UNC
6"	2.19	1.00	1.00	_	2.00	6.00	16/8	3/4-10 UNC
8"	2.38	1.12	1.12	_	2.25	6.00	16/8	3/4-10 UNC
10"	2.69	1.19	1.19	_	2.25	7.00	24/12	7/8-9 UNC
12"	3.00	1.25	1.25	_	2.50	7.00	24/12	7/8-9 UNC
14"	3.01	1.38	1.38	_	2.50	7.00	24/12	1-8 UNC
16"	3.38	1.44	1.44	_	3.00	8.00	32/16	1-8 UNC
18"	4.12	1.56	1.56	_	3.00	9.00	32/16	1 1/8-7 UNC
20"	5.14	1.69	1.69	_	3.50	10.00	40/20	1 1/8-7 UNC
24"	5.98	1.88	1.88	_	4.00	11.00	40/20	1 1/4-7 UNC
		2.12	_	_	3.50	_	56	
30"	6.57	_	_	_	3.00	_	56	1 1/4-7 UNC
30	0.07	_	l	_	3.50	_	56	1 1/4-7 UNG
		_		2.94	4.25	_	56	
		2.38		_	4.00	_	64	
36"	8.00			_	3.50		64	1 1/2-6 UNC
30	0.00			_	4.00		64	1 1/2-0 0110
		_		3.56	5.00	_	64	
		2.62		_	4.50		72	
42"	9.88	_			4.00		72	1 1/2-6 UNC
"-	0.00			2.01	4.50		72	, 2 3 3.10
		0.75		3.81	5.50		72	
		2.75			4.50		88	
48"	10.87				4.50		88	1 1/2-6 UNC
1				4.25	5.00		88 88	., = = =0
			_	4.20	6.00		ÖÖ	

Table 3 Recommended Bolt Tightening Torques

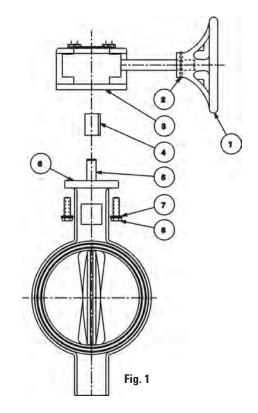
Flange Size	Bolt Size		Maximum Bolt Torque (ft.•lbs.)
2"- 4"	5/8"	20	70
5"- 8"	3/4"	30	120
10" & 12"	7/8"	50	200
14" & 16"	1"	70	240
18" & 20"	1-1/8"	100	380
24" & 30"	1-1/4"	140	520
36"- 48"	1-1/2"	200	800

Bolt Tightening Cross Over Pattern

Suggested Bolting Methods

Butterfly Valve Technical Information

Gear Operator Installation and Handwheel Positioning


Tools Required						
Fire Protection	2" — 8" 9/16" hex wrench & 1/8" hex allen wrer					
(UL/FM)	10" — 12"	3/4" hex wrench and 1/8" hex allen wrench				
	2" — 8"	9/16" hex wrench				
Commercial	<u>10" — 14"</u>	3/4" hex wrench				
	16" — 18"	1 1/8" hex wrench				

INSTALLATION

- Install handwheel (1) onto gear operator shaft and secure with pin (2). (If not already attached) See Fig. 1.
- 2. Turn the handwheel (1) clockwise until in full SHUT position.
- 3. Remove 2 screws holding pointer cover plate to center of gear operator to expose bore. Retain pointer cover plate and screws for reinstallation later.
- 4. Assure valve is in full SHUT position, turn valve stem (5) to close disc if necessary.
- 5. Assure both mounting base of gear operator (3) and valve top flange (6) are clean and dry.
- 6. Determined desired handwheel position in reference to the piping system and compare with Fig. 2. Basically there are 2 mounting positions for the gear operator onto the valve and the valve can be mounted in either direction into the piping system. This will allow handwheel to be positioned in any of the 4 Quadrants as shown in Fig. 2. Note that 10" and 12" size commercial valves only allow for handwheel positioning in Quadrants 1 and 2.
- 7a. Gear operators with adapter bushing
 - Insert adapter bushing (4) into gear operator (3) bore aligning bushing key with desired keyway. Keyway selection will determine handwheel orientation position.
 - Align adapter bushing (4) bore with valve stem (5) and slide gear operator assembly onto valve stem (5) until seated with valve top flange.
- 7b. Gear operators without adapter bushing
 - Align gear operator (3) bore with valve stem (5) and align with desired keyway.
 Keyway selection will determine handwheel orientation position.
 - Slide gear operator assembly onto valve stem (5) until seated with valve top flange.
- 8. Secure gear operator (3) to valve top flange (6) using supplied* fasteners (7 & 8).
- 9. Reinstall pointer cover plate onto gear operator that you removed in step 3 above. Arrow should be aligned to indicate SHUT position.
- Rotate handwheel from full SHUT to full OPEN positions several times to assure proper operation.
- 11. Proceed with valve installation into piping system.

Note - Connection of gear operator to valve stem varies depending on gear operator model, size and style. The adapter bushing and key may be different from illustration shown. UL/FM Valves require four fasteners.

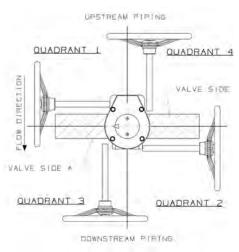
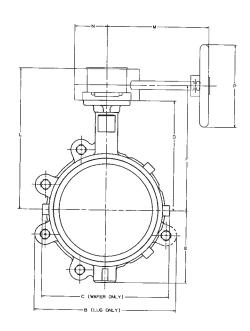
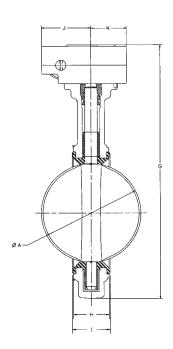


Fig. 2

^{*}A minimum of two fasteners is required, installed in opposite diagonal corners. UL/FM valves require four fasteners.

NIBCO Fire Protection Butterfly Valves


Gear Operator Bushing and Drive Key Repair Parts


ITEM	VALVE SIZE	VALVE ASSEMBLY FIGURE NUMBER	BUSHING REFERENCE NUMBER	BUSHING ASSEMBLY PART NUMBER	DRIVE KEY PART NUMBER	DRIVE KEY SIZE	DRIVE KEY MATERIAL
1	2"	WD/LD 3510	01	T117725 PP	T117850 PP	1/8" SQ. X .38 LG.	BRASS
2	2 1/2" & 3"	WD/LD 3510	02	T117726 PP	T117851 PP	1/8" SQ. X .68 LG.	BRASS
3	2 1/2" & 3"	GD-4765/6765	02	T117726 PP	T117850 PP	1/8" SQ. X .38 LG.	BRASS
4	2 1/2" & 3"	GD-4865/6865	_	T118778 PP	T117852 PP	1/8" SQ. X .44 LG.	STEEL
5	4"	WD/LD 3510	03	T117727 PP	T117852 PP	1/8" SQ. X .44 LG.	STEEL
6	4"	GD-4865/6865	_	T1427913 PP	T117852 PP	1/8" SQ. X .44 LG.	STEEL
7	4" & 5"	GD-4765/6765	04	T117728 PP	T117853 PP	1/8" SQ. X .29 LG.	STEEL
8	5" & 6"	WD/LD 3510	04	T117728 PP	T117854 PP	1/8" SQ. X .41 LG.	STEEL
9	6" & 8"	GD-4765/6765	05	T117729 PP	T117856 PP	1/8" SQ. X .91 LG.	STEEL
10	6" & 8"	GD-4865/6865	_	T118780 PP	T117856 PP	1/8" SQ. X .91 LG.	STEEL
11	8"	WD/LD 3510	05	T117729 PP	T117856 PP	1/8" SQ. X .91 LG.	STEEL
12	10"	GD-4765/6765	06	T117730 PP	T117858 PP	3/16" SQ. X 1.00 LG	STEEL
13	10"	GD-4865/6865	_	T118781 PP	T117858 PP	3/16" SQ. X 1.00 LG	STEEL
14	10" & 12"	WD/LD 3510	07	T117731 PP	T117858 PP	3/16" SQ. X 1.00 LG	STEEL

2000/3000 Series Technical Information

Valve with Gear Mounted

Typical LD/WD2000-5 and LD1000-5

DIMENSIONS

Valve Size	Α	B (Lug)	C (Wafer)	D	E	F	G	H (Metal)	(Rubber)	J	K	L	М	N	Р
2"	2.5	4.6	4.9	5.4	2.9	6.9	11.1	1.69	1.81	2.9	2.13	8.2	7.64	2.12	5.91
2½"	2.9	5.6	5.6	5.9	3.3	7.4	12.0	1.81	1.94	2.9	2.13	8.7	7.64	2.12	5.91
3"	3.1	6.1	6.1	6.1	3.4	7.6	12.3	1.81	1.94	2.9	2.13	8.9	7.64	2.12	5.91
4"	4.1	8.3	7.0	6.9	4.0	8.4	13.7	2.06	2.19	2.9	2.13	9.7	7.64	2.12	5.91
5"	5.1	9.4	8.3	7.4	4.8	8.9	15.0	2.19	2.31	2.9	2.13	10.2	7.64	2.12	5.91
6"	6.1	10.3	9.3	8.0	5.3	9.5	16.1	2.19	2.31	2.9	2.13	10.8	7.64	2.12	5.91
8"	8.1	13.4	11.6	9.3	6.5	10.8	18.5	2.38	2.5	2.9	2.13	12.0	9.53	2.12	9.84
10"	10.1	15.5	14.3	10.5	8.0	12.3	21.8	2.69	2.81	3.9	3.03	13.8	11.54	3.03	9.84
12"	12.1	18.3	16.8	12.0	9.3	13.8	24.6	3.00	3.13	3.9	3.03	15.3	11.54	3.03	9.84
14"	13.1	-	20.6	14.5	10.5	16.3	28.3	3.01	3.13	4.3	3.15	17.8	12.87	3.14	11.81
16"	15.3	-	22.3	15.7	11.7	17.9	31.7	3.38	3.54	6.3	3.94	20.0	13.58	4.92	11.81
18"	17.3	-	25.2	16.6	12.4	18.8	33.3	4.12	4.29	6.3	3.94	20.9	15.04	4.92	15.75
20"	19.4	-	27.4	18.9	13.7	21.3	37.8	5.14	5.31	6.5	4.92	24.1	18.11	4.92	11.81
24"	23.3	-	31.5	22.1	17.5	24.5	44.8	5.98	6.14	6.5	4.92	27.3	18.11	4.92	11.81

Butterfly Valve Technical Information

Resilient Liner Materials

EPDM – EPDM is a terpolymer elastomer made from ethylene-propylene diene monomer. EPDM has good abrasion and tear resistance and offers excellent chemical resistance to a variety of acids and alkalines. It is susceptible to attack by oils and is not recommended for applications involving petroleum oils, strong acids, or strong alkalines. EPDM should not be used on compressed air lines. It has exceptionally good weather aging and ozone resistance. It is fairly good in ketones and alcohols.

BUNA-N (Nitrile) (NBR) — Buna-N is a general purpose oil resistant polymer known as nitrile rubber. Nitrile is a copolymer of butadiene and acrylonitrile. Buna-N has good solvent, oil, water and hydraulic fluid resistance. It displays good compression set, abrasion resistance and tensile strength. Buna-N should not be used in highly polar solvents such as acetone and methyl ethyl ketone, nor should it be used in chlorinated hydrocarbons, ozone or nitro hydrocarbons. Some aviation fuels may not be compatible.

Fluoroelastomer (FKM) – Fluoroelastomers are inherently compatible with a broad spectrum of chemicals. Because of this extensive chemical compatibility which spans considerable concentration and temperature ranges, fluoroelastomers have gained wide acceptance as a material of construction for butterfly valve O-rings and seats. Fluoroelastomer can be used in most applications involving mineral acids, salt solutions, chlorinated hydrocarbons and petroleum oils. It is particularly good in hydrocarbon service.

FKM is not recommended for use in high temperature water.

Liner Temperature Ratings

Liner Material	Temperature
EPDM**	-20°F to + 250°F
Nitrile (Buna-N)	-20°F to + 180°F
Fluoroelastomer	-20°F to + 300°F

^{**}EPDM is rated at 250°F intermittent service and 225°F continuous service.

NOTE – the NIBCO Chem-Guide® should be referenced for liner material compatibility for each application.

Proprietary compound formulas are used for each of the elastomers to provide the right combination of seat compression, abrasion resistance, and chemical resistance to match your application. Elastomeric seat materials are not suitable for steam service.

Butterfly Valve Technical Information

Metals Used in Valves & Fittings

Aluminum—A non-ferrous metal, very lightweight, approximately one-third as much as steel. Aluminum exhibits excellent atmospheric corrosion resistance, but can be very reactive with other metals. In valves, aluminum is mainly used as an exterior trim component such as a handwheel or identification tag.

Copper—Among the most important properties of wrot copper materials are their thermal and electrical conductivity, corrosion resistance, wear resistance, and ductility. Wrot copper performs well in high temperature applications and is easily joined by soldering or brazing. Wrot copper is exclusively used for fittings.

Bronze—One of the first alloys developed in the bronze age is generally accepted as the industry standard for pressure rated bronze valves and fittings. Bronze has a higher strength than pure copper, is easily cast, has improved machinability, and is very easily joined by soldering or brazing. Bronze is very resistant to pitting corrosion, with general resistance to most chemicals less than that of pure copper.

Silicon Bronze—Has the ductility of copper but much more strength. Silicon bronze has equal or greater corrosion resistance to that of copper. Commonly used as stem material in pressure-rated valves, silicon bronze has greater resistance to stress corrosion cracking than common brasses.

Aluminum Bronze—The most widely accepted disc material used in butterfly valves, aluminum bronze is heat treatable and has the strength of steel. Formation of an aluminum oxide layer on exposed surfaces makes this metal very corrosion resistant. Not recommended for high pH wet systems.

Brass—Generally good corrosion resistance. Susceptible to de-zincification in specific applications; excellent machinability. Primary uses for wrot brass are for ball valve stems and balls, and iron valve stems. A forging grade of brass is used in ball valve bodies and end pieces.

Gray Iron—An alloy of iron, carbon and silicon; easily cast; good pressure tightness in the as-cast condition. Gray iron has excellent dampening properties and is easily machined. It is standard material for bodies and bonnets of Class 125 and 250 iron body valves. Gray iron has corrosion resistance that is improved over steel in certain environments.

Ductile Iron—Has composition similar to gray iron. Special treatment modifies metallurgical structure which yields higher mechanical properties; some grades are heat treated to improve ductility. Ductile iron has the strength properties of steel using similar casting techniques to that of gray iron.

Carbon Steel—Very good mechanical properties; good resistance to stress corrosion and sulfides. Carbon steel has high and low temperature strength, is very tough and has excellent fatigue strength. Mainly used in gate, globe, and check valves for applications up to 850°F, and in one-, two-, and three-piece ball valves.

3% Nickel Iron—Improved corrosion resistance over gray and ductile iron. Higher temperature corrosion resistance and mechanical properties. Very resistant to oxidizing atmospheres.

Nickel-Plated Ductile Iron—Nickel coatings have received wide acceptance for use in chemical processing. These coatings have very high tensile strength, 50 to 225 ksi. To some extent, the hardness of a material is indicative of its resistance to abrasion and wear characteristics. Nickel plating is widely specified as a disc coating for butterfly valves.

400 Series Stainless Steel—An alloy of iron, carbon, and chromium. This stainless is normally magnetic due to its martensitic structure and iron-content. 400 series stainless steel is resistant to high temperature oxidation and has improved physical and mechanical properties over carbon steel. Most 400 series stainless steels are heat-treatable. The most common applications in valves are, for stem material in butterfly valves, and backseat bushings and wedges in cast steel valves.

316 Stainless Steel—An alloy of iron, carbon, nickel, and chromium. A non-magnetic stainless steel with more ductility than 400SS. Austinetic in structure, 316 stainless steel has very good corrosion resistance to a wide range of environments, is not susceptible to stress corrosion cracking and is not affected by heat treatment. Most common uses in valves are: stem, body and ball materials.

17-4 PH Stainless Steel*—Is a martensitic precipitation/age hardening stainless steel offering high strength and hardness. 17.4 PH withstands corrosive attack better than any of the 400 series stainless steels and in most conditions its corrosion resistance closely approaches that of 300 series stainless steel. 17.4 PH is primarily used as a stem material for butterfly and ball valves.

Alloy 20Cb-3*—This alloy has higher amounts of nickel and chromium than 300 series stainless steel and with the addition of columbium, this alloy retards stress corrosion cracking and has improved resistance to sulfuric acid. Alloy 20 finds wide use in all phases of chemical processing. Commonly used as interior trim on butterfly valves.

Monel*—Is a nickel-copper alloy used primarily as interior trim on butterfly and ball valves. One of the most specified materials for corrosion resistance to sea and salt water. Monel is also very resistant to strong caustic solutions.

Stellite*—Cobalt base alloy, one of the best all-purpose hard facing alloys. Very resistant to heat, abrasion, corrosion, impact, galling, oxidation, thermal shock and erosion. Stellite takes a high polish and is used in steel valve seat rings. Normally applied with transfer plasma-arc; Stellite hardness is not affected by heat treatment.

Hastelloy C*—A high nickel-chromium molybdenum alloy which has outstanding resistance to a wide variety of chemical process environments including strong oxidizers such as wet chlorine, chlorine gas, and ferric chloride. Hastelloy C is also resistant to nitric, hydrochloric, and sulfuric acids at moderate temperatures.

Note: See the NIBCO Chemical Resistance Guide for specific questions.

- *Alloy 20Cb-3 is a registered trademark of Carpenter Technology
- *Hastelloy C is a registered trademark of Cabot Corporation
- *Stellite is a registered trademark of Cabot Corporation
- * Monel is a registered trademark of International Nickel
- *17-4 PH Stainless Steel is a registered trademark of Armco Steel Company

Butterfly Valve Technical Information Torque Data

LD/WD 2000/3000/5022 Series Torque Data (In. Lbs.)

100 PSI	200 PSI	250 PSI
140	180	195
190	235	255
250	300	325
430	530	580
590	790	845
795	1,035	1,155
1,850	2,350	2,600
2,350	2,900	3,125
3,875	5,390	6,145
	140 190 250 430 590 795 1,850 2,350	140 180 190 235 250 300 430 530 590 790 795 1,035 1,850 2,350 2,350 2,900

LD/WD 1000/2000 Series Torque Data (In. Lbs.)

Size	50 PSI	75 PSI	100 PSI	150 PSI
14"	_	3,837	_	4,870
16"	_	5,003	_	6,685
18"	_	6,567	_	8,958
20"	_	8,540	_	11,950
24"	_	13,220	_	18,680
30"	28,320	29,782	30,864	33,336
36"	40,624	41,875	43,480	46,528
42"	69,744	72,076	74,632	79,864
48"	96,648	100,520	103,840	111,112

N200 Series Torque Data (In. Lbs.)

Size	100 PSI	200 PSI	
2	120	220	
2 ½	130	320	
3	180	480	
4	280	820	
5	360	1,162	_
6	600	1,560	
8	1,100	2,890	
10	2,040	5,270	
12	4,500	8,050	_

Note: Torque Data shown is for general service (clean water, ambient temperatures). For non-lubricating, high temperatures or aggressive media, consult Nibco Technical Service.

Butterfly Valve Torque Data

Torque is the rotary effort required to operate a valve. This turning force in a butterfly valve is determined by three factors. (1) Friction of the disc to seat for sealing (2) Bearing friction (3) Dynamic torque.

Breakaway Torque is the total of the torques resulting from bearing friction and seat/disc interference friction at a given pressure differential. This value is normally the highest required torque to operate a valve, and is used in sizing actuators. The values listed at the left are based on performance tests and include a safety factor. The torques listed are valid for water and lubricating fluids at ambient temperature. For dry and non-lubricating fluids, contact your NIBCO customer service representative.

Butterfly valves, sizes 8" and larger, when used on liquids, show a marked increase in dynamic torque which tends to close the valve. For this reason, gear operated or actuated valves are recommended.

Torque listed for EPDM. When calculating torques for Buna-N, or Fluoroelastomer multiply listed torque by 1.25. Consult factory for dry service valves.

FC/FD27*5/57*5 GD4765/4775 Torque Data (In. Lbs.)

Size	100 PSI	200 PSI	300 PSI
2	48	67	83
2 ½	48	67	83
3	100	134	168
4	185	251	317
5	294	410	499
6	520	705	890
8	1,070	1,495	1,798
10	1,550	2,214	2,654
12	2,150	3,024	3,662

Note: See Pages 41-42 for High Performance BFV Torque Data. Visit our website for the most current information.

Ball and/or Butterfly Valve Actuation Data Sheet

To actuate all valves it is necessary to provide certain data to assure proper sizing and prevent damage to the system. Please supply as much data as possible.
NIBCO recommends having the valve and actuators assembled and tested at the factory, rather than assembled in the field. Please indicate whether this inquiry is for an assembled and tested package or field assembly: _ Assemble and test Field assembly
I. Valve Information: A. Type: Butterfly Ball Ball B. Fig. No. Size Oty. Inlet Pressure: Is Fluid: Dry Wet Differential Pressure: System Velocity: System GPM: Temperature: Temperature: Throttled/Modulating Differential Service: On/Off Throttled/Modulating Temperature D. Service and Modulating Service: On/Off Throttled/Modulating Temperature D. Service D. Service D. Service D. Service D. Ser
II. Actuator Information: A. Electric: Voltage: 115VAC
B. Pneumatic: Air supply to actuator: PSI (Min. 40 psi, Max. 120 psi) Actuator Type: Air-to-Air Air-to-Spring Failsafe: Open Closed Solenoid: NEMA 4/4x NEMA 7/9 Switch Box: If so: NEMA 4/4x NEMA 7/9 Type: SPDT DPDT (two each is standard) Pneumatic Positioner: 3-15 4-20 MA III. Special Notes:
Note: Not all configurations are available. NEMA 4/4x enclosures are for use in non-hazardous/unclassified locations, indoors or outdoors. NEMA 7 enclosures are for use in hazardous (classified) indoor locations as Class I, Division I, Group C or D as defined in NFPA 70. NEMA 9 enclosures are for use in hazardous (classified) indoor locations as Class II, Division I, Groups E, F, or G.

Figure Number Comparisons* Butterfly Valves

DUCTILE IRON

NIBCO	WD2000	LD2000	WD2100	LD2100	WD3010	LD3010	WD3110	LD3110	WD3022	LD3022
Bray	30-11010-120	31-11010-120	30-11010-684	31-11010-684	30-11010-119	31-11010-119	30-11010-713	31-11010-713	30-11010-124	31-11010-124
Centerline	A2-061-05	B2-061-05	A2-061-01	B2-061-01	A2-021-05	B2-021-05	A2-021-01	B2-021-01	A2-044-05	B2-044-05
Demco	NEC1114351	NEC5114351	NEC1114311	NEC5114311	NEC1115351	NEC5115351	NEC1115311	NEC5115311	NEC1122351	NEC5122351
Grinnell	WD-8281-3	LD-8281-3	WD-8181-3	LD-8181-3	WD-8201-3	LD-8201-3	WD-8101-3	LD-8101-3	WD-8271-4	LD-8271-4
Keystone	HS-1	HS-2								
Milwaukee	MW-233-E	ML-233-E	MW-233-B	ML-233-B	MW-232-E	ML-232-E	MW-232-B	ML-232-B	MW-234-E	ML-234-E
Mueller Steam	55-ANK6-1	56-ANK6-1	55-ANK3-1	56-ANK3-1	55-ANI6-1	56-ANI6-1	55-ANI3-1	56-ANI3-1	55-AHH6-1	56-AHH6-1
Watts	DBF-04-121-15	DBF-03-121-15	DBF-04-121-25	DBF-03-121-25	DBF-04-111-15	DBF-03-111-15	DBF-04-111-25	DBF-03-111-25	DBF-04-131-25	DBF-03-131-25

NOTE: NIBCO lug style butterfly valves are fully rated for dead end service without a downstream flange. All valves listed above as comparable may not have this rating.

CAST IRON

NIBCO	N200235	N200135	N200245	N200145	N200236	N200136	N200246	N200146
Grinnell	LC128*3	WC128*3	LC118*3	WC118-3	LC120*3	WC120*3	LC110*3	WC110*3
Centerline	B106135	A106145	B106161	A106131	B102135	A102135	B102131	A102131
Watts	BF03-121-1	BF04-121-1	BF03-121-2	BF04-121-2	BF03-111-1	BF04-111-1	BF03-111-2	BF04-111-2
Milwaukee	CL223E	CW223E	CL223B	CW223B	CL222E	CW222E	CL222B	CW222B

^{*}To be used as a guide only. Some variation in detail is possible.
Information subject to change.

Notes:

Notes:

NIBCO INC. 125% LIMITED WARRANTY

Applicable to NIBCO INC. Pressure Rated Metal Valves

NIBCO INC. warrants each NIBCO pressure rated metal valve to be free from defects in materials and workmanship under normal use and service for a period of five (5) years from date put into service.

In the event any defect occurs which the owner believes is covered by this warranty, the owner should immediately contact NIBCO Technical Services, either in writing or by telephone at 1.888.446.4226 or 1.574.295.3000. The owner will be instructed to return said product, at the owner's expense, to NIBCO INC., or an authorized representative for inspection. In the event said inspection discloses to the satisfaction of NIBCO INC. that said valve is defective, it will be replaced at the expense of NIBCO INC.. Replacements shall be shipped free of charge to the owner. In the event of the replacement of any valve, NIBCO INC. shall further pay the owner the greater of twenty-five (25%) percent of the price of the valve according to the published suggested list price schedule of NIBCO INC. in effect at the time of purchase, or ten (\$10.00) dollars, to apply on the cost of the installation of said replacement valve.

TO THE EXTENT PERMITTED BY LAW, THIS WARRANTY SPECIFICALLY EXCLUDES INCIDENTAL AND CONSEQUENTIAL DAMAGES OF EVERY TYPE AND DESCRIPTION RESULTING FROM ANY CLAIMED DEFECT IN MATERIAL OR WORKMANSHIP, INCLUDING BUT NOT LIMITED TO, PERSONAL INJURIES AND PROPERTY DAMAGES.

Some states or countries do not allow the exclusion or limitation of incidental or consequential damages so these limitations may not apply to you.

TO THE EXTENT PERMITTED BY LAW, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE LIMITED IN DURATION.

This warranty gives you specific legal rights, and you may also have other rights which vary from state to state and country to country.

How to Order State quantity, figure number and size for each valve you wish

to order. See individual valve catalog pages for specific or special product designations.

HOW MANY TO ORDER

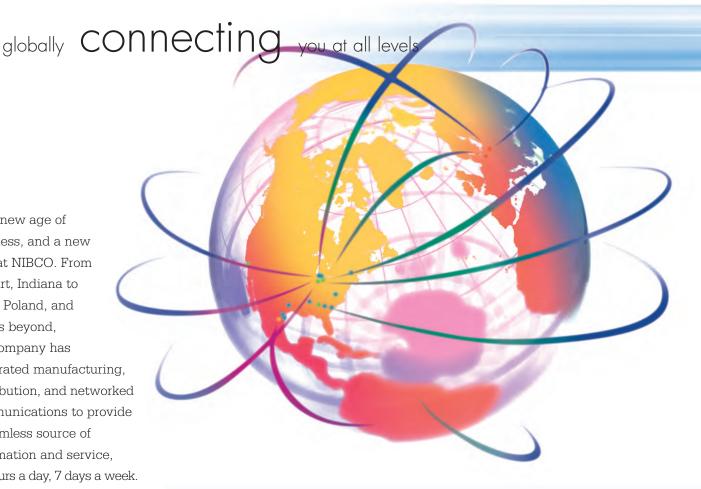
NIBCO® valves are decimal packed for your convenience in handling, shipping and stock-keeping. Number in master carton varies with item.

POLICY ON RETURNS TO FACTORY

NO NIBCO valves are to be returned without prior written agreement. Transportation must be prepaid. A 20% charge will be made to cover cost of rehandling and reinspection.

TECHNICAL ASSISTANCE

Engineers, contractors, wholesalers or manufacturers may obtain special or technical assistance from any factory representative of NIBCO. Write, fax or phone.


> NIBCO INC. World Headquarters 1516 Middlebury Street Elkhart, IN 46516-4740 **USA**

> > Phone: 1.574.295.3000 Fax: 1.574.295.3307

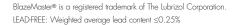
Technical Service Phone: 1.888.446.4226

Fax: 1.888.336.4226

To the best of our knowledge the information contained in this publication is accurate. However, NIBCO does not assume any liability whatsoever for the accuracy or completeness of such information. Final determinations of the suitability of any information or product for the use to be contemplated is the sole responsibility of the user. The manner of that use, and whether there is any infringement of patents, is also the sole responsibility of the user.

It's a new age of business, and a new way at NIBCO. From Elkhart, Indiana to Lodz, Poland, and points beyond, our company has integrated manufacturing, distribution, and networked communications to provide a seamless source of information and service. 24 hours a day, 7 days a week. But this integration hasn't happened overnight. It's been part of a long-term strategic process that has pushed us to reconsider every aspect of our business. The result? We're a vertically integrated manufacturer with the products and systems in place to deliver low cost and high quality. NIBCO products are manufactured under a Quality Management System conforming to the current revision of ISO-9001 International Standards, We know the flow control industry is only going to get more demanding, and we are more than ready. We will continue to lead. That's what NIBCO is all about.

VALVES



Pressure-rated bronze, iron and alloy-iron gate, globe and check valves • Pressure-rated bronze ball valves • Boiler specialty valves • Commercial and industrial butterfly valves • Lined butterfly valves • Circuit balancing valves • Carbon and stainless steel ball valves • ANSI flanged steel ball valves • Lined ball valves • Pneumatic and electric actuators and controls • Grooved ball and butterfly valves • High performance butterfly valves • UL/FM fire protection valves • MSS specification valves • Bronze specialty valves • Low pressure gate, globe, check and ball valves • Frostproof sillcocks • Quarter-turn supply stops • Quarter-turn low pressure valves • PVC and CPVC plumbing and industrial ball valves • Bronze & Iron Y-strainers • Sample valves • Sanitary valves • Lead-Free valves • Coil-Connect® Kits

LEAD-FREE: Weighted average lead content ≤0.25%

FITTINGS

Wrot and cast copper pressure and drainage fittings • Cast copper alloy flanges • Wrot and cast press fittings • ABS and PVC DVVV fittings • Schedule 40 PVC pressure fittings • CPVC CTS fittings • CPVC CTS-to-metal transition fittings • Schedule 80 PVC and CPVC systems • CPVC BlazeMaster® fire protection fittings • Lead-Free fittings

FLEXIBLE PIPING SYSTEMS

PE-RT and PEX tubing for potable and radiant applications • Insulated tubing • Risers • Ice maker tubing • Silicon Performance Bronze® fittings • Poly alloy fittings • Home Run Manifold® • Radiant heat manifolds • Ball valves and supply stops • Connections, tools and accessories • Radiant heat controls and panels

INDUSTRIAL PLASTICS

Thermoplastic pipe, valves, and fittings in PVC, Corzan® CPVC, polypropylene and PVDF Kynar® • Pneumatic and electric actuation systems • Blaze/Master® CPVC fire protection fittings

BlazeMaster® and Corzan® are registered trademarks of the Lubrizol Corporation ullet Kynar® is a registered trademark of Arkema Inc.

eNIBCO

EDI-Electronic Data Interchange • VMI-Vendor Managed Inventory • NIBCO.com • NIBCOpartner.com

NIBCO INC. WORLD HEADQUARTERS

WEB: www.nibco.com

1516 MIDDLEBURY STREET ELKHART, IN 46516-4740 DOMESTIC CUSTOMER SERVICE
PHONE: 800.234.0227

FAX: 800.234.0557

TECHNICAL SERVICE
PHONE: 888.446.4226
FAX: 888.336.4226

INTERNATIONAL OFFICE
PHONE: +1/574.295.3327
FAX: +1/574.295.3455