LOK[®] VALVES & ACCESSORIES

FIG. 7260 Tee Strainer

The Fig. 7260 Tee Strainer provides an economical, compact and hydraulically efficient means of protecting valuable piping system components. The in-line, twin-fold strainer basket provides more than 100% of the projected pipe area for open flow through the strainer screen, which results in excellent flow performance across the strainer.

Gruvlok Strainers are designed and tested to ensure long term, reliable service in working pressures up to 750 psi (51.7 bar), depending on size and the pressure rating of the connecting coupling.

MATERIAL SPECIFICATIONS

BODY:

2" - 12" Ductile iron conforming to ASTM A 536, Grade 65-45-12 14" - 18" Carbon steel pipe conforming to ASTM A 53

STRAINER BASKET:

Stainless steel type 304 bar and woven wire screen. 12 mesh in sizes 2" - 3" and 6 mesh in sizes 4" - 18".

ACCESS COUPLING & END CAP:

2" - 12" Ductile iron conforming to ASTM A 536, Grade 65-45-12 14" - 18" Low carbon steel conforming to ASTM A 53

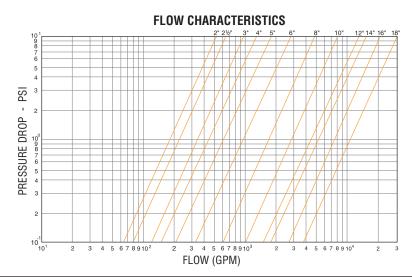
BOLTS:

SAE J429, Grade 5, Zinc Electroplated

HEAVY HEX NUTS:

ASTM A563, Grade A, Zinc Electroplated

COUPLING GASKETS:

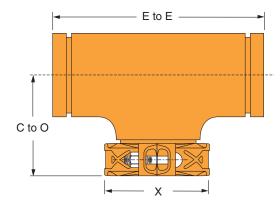

Elastomer properties as designated by ASTM D 2000 Grade "E" EPDM -40°F to +230°F (service temp. range) Grade "EP" EPDM -40°F to +250°F (service temp. range) Other options available upon request.

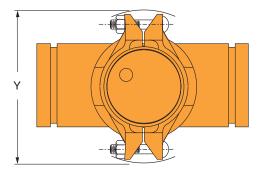
DRAIN PLUG: Carbon steel square head plug conforming to ASME B16.11

TAP SIZES: 2"-4" - ¹/₂ NPT, 5"-8" - ³/₄ NPT, 10"-18" - 1 NPT,

COATING:

2" - 12" - Rust-inhibiting paint — color: orange (standard)
Hot Dip Galvanized conforming to ASTM A 153 (optional)
Other Colors Available (IE: RAL3000 and RAL9000)
For other Coating requirements contact an Anvil Representative.


NOTE: Most U.S. piping engineers specify system startup instructions for new systems which include removing and cleaning the strainer screen after system flushing of main piping before the system is put into normal operation. After flushing, replace the strainer screen. Flow data values are based on flow of clean water at ambient temperatures. The pressure drop across a strainer, 50% clogged, is approximately twice as great as that of a clean strainer. Strainer baskets need a routine maintenance program to maintain efficiency and to prevent excess pressure drop caused by a clogged screen.


PROJECT INFORMATION	APPROVAL STAMP
Project:	Approved
Address:	Approved as noted
Contractor:	Not approved
Engineer:	Remarks:
Submittal Date:	
Notes 1:	
Notes 2:	

RUVLOK VALVES & ACCESSORIES

FIG. 7260 Tee Strainer

NOTE: The above illustration shows the required orientation of the Rigidlok access coupling for assembly with a grooved-end flange.

FIGURE 7260 TEE STRAINER									
Nominal Size	0.D.	Maximum* Working Pressure	E to E	C to O	x	Y	Basket Removal	Approx. Wt. Ea.	
In./DN(mm)	In./mm	PSI/bar	In./mm	In./mm	In./mm	In./mm	Clearance	Lbs./Kg	
2	2.375	750	61/2	4 ¹ /4	31/2	57/8	43/8	6.0	
50	60.3	51.7	165	108	89	149	111	2.7	
2 ¹ / ₂	2.875	750	7 ¹ /2	43⁄4	4	6 ¹ /2	5 ¹ /8	8.0	
65	73.0	51.7	191	121	102	165	130	3.6	
3	3.500	750	8 ¹ /2	5 ¹ /4	4 ³ / ₄	7	6	13.0	
80	88.9	51.7	216	133	121	178	152	5.9	
4	4.500	750	10	61/8	57⁄8	83/8	71/4	19.0	
100	114.3	51.7	254	156	149	213	184	8.6	
5	5.563	750	11	65/8	7	10 ¹ /8	8 ¹ /4	30.0	
125	141.3	51.7	279	168	178	257	210	13.6	
6	6.625	750	13	75⁄/8	8 ¹ /8	11 ¹ /8	9 ³ /4	45.0	
150	168.3	51.7	330	194	206	283	248	20.4	
8	8.625	600	15½	9 ¹ /8	10 ¹ /2	14 ¹ /8	12	79.0	
200	219.1	41.4	394	232	267	359	305	35.8	
10	10.750	500	18	103/8	127/8	17½	14 ¹ /4	133	
250	273.1	34.5	457	264	327	435	362	60.3	
12	12.750	400	20	11 ³ ⁄8	15	19½	16 ¹ ⁄4	187	
300	323.9	27.6	508	289	381	486	413	84.8	
14	14.000	300	22	12¾	16½	20½	171⁄4	272	
350	355.6	20.7	559	324	410	521	438	123.4	
16	16.000	300	24	12	18½	22 ¹ /4	20	350	
400	406.4	20.7	610	305	460	565	508	158.8	
18	18.000	300	31	15½	20 ¹ /2	243/8	24 ¹ / ₂	400	
450	457.2	20.7	787	394	521	619	622	181.4	

* Maximum working pressure is based upon the performance capability of the Gruvlok Strainer. Maximum system working pressure is dependent upon the couplings used for installation and the pressure capability of other system components.

14" - 18" Fabricated

Not for use with copper systems.