For Commercial Applications

Job Name	Contractor
Job Location	Approval
Engineer	Contractor's P.O. No.
Approval	Representative

Series ICV-125-2-2-T

Cast Iron Wafer Check Valves

Sizes: 2" - 12" (50-300mm)

Series ICV-125-2-2-T Cast Iron Wafer Check Valves are designed for HVAC and general service applications. They are lighter, more compact, utilize half the number of studs for installation and in some sizes offer more flow capacity than conventional swing check valves. The two spring-loaded plates close when the flow decreases, without the necessity of reverse flow. The Series ICV-125-2-2-T is designed and tested according to API 594 for use between ANSI Class 125 or 150 flanges.

Features

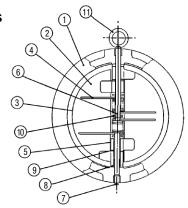
- Lightweight & compact design
- Aluminum bronze disc plates
- EPDM seat bonded to body for leak tight sealing
- Silent check valve
- Complies with API 594

Note: When installed in vertical pipe, flow direction in normal operation should open discs, and inlet pressure should be greater than head pressure.

Specifications

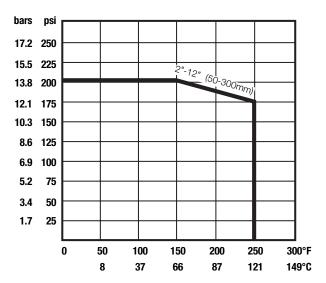
Check valve shall be manufactured out of ASTM A126 Class B cast iron and comply with API 594. Valve shall be pressure rated to 200psi (13.8 bar) for sizes 2" – 12" (50mm – 300mm). Check valve constructed with aluminum bronze disc plate, EPDM seat, 316 stainless steel spring, and PTFE bearings. Valve shall be Watts Regulator Company Series ICV-125-2-2-T.

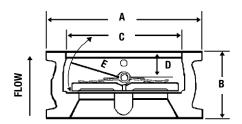
Pressure — Temperature:


Temperature Range: $-40^{\circ}F - 250^{\circ}F$ ($-40^{\circ}C - 121^{\circ}C$) Pressure Rating:

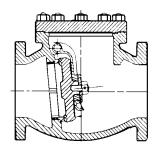
• 2" – 12" (50 – 300mm): 200psi (13.8 bar) CWP @ 150°F (66°C)

ICV-125-2-2-T

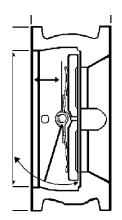

Materials


1.	Body	Cast Iron	ASTM A126 Class B
2.	Disc plates (2)	Aluminum Bronze	ASTM B-148
3.	Seat	EPDM	Commercial
4.	Spring	Stainless Steel	ASTM A-276 316SS
5.	Hinge Pin	Stainless Steel	ASTM A-167 304SS
6.	Stop pin	Stainless Steel	ASTM A-167 304SS
7.	Plug	Carbon Steel	ASTM A-105
8.	Body bearings	PTFE	Commercial
9.	Plate bearings	PTFE	Commercial
10.	Spring bearings	PTFE	Commercial

Pressure - Temperature Ratings



Note: Indicated Pressures are WOG.


Note: flanges not included. Designed to mount between user supplied flanges.

"ICV-125-2-2-T" vs. Conventional Swing Check

Conventional Swing Check

- Heavy
- Lower flow capacity
- Twice as many studs and nuts required

Watts "ICV-125-2-2-T"

- Lightweight
- Higher flow capacity
- Only one set of studs and nuts required

Dimensions - Weights

SIZE (DN)														STUD DIA	METER	LENGTH		WEIGHT	
		A		В		С		D		E		E CV							
In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.	In.	mm.			mm	in.	in.	mm.	lbs.	kg.
2	50	41//8	105	21//8	54	29/16	65	1	25	1%	35	72	4	5/8	16	51/4	133	7	3
21/2	65	47/8	124	23/8	60	31/16	78	1	25	11/2	38	132	4	5/8	16	5½	140	9	4
3	80	5%	137	25/8	67	311/16	94	11//8	29	1%	48	180	4	5/8	16	5¾	146	11	5
4	100	67/8	175	25/8	67	45/8	117	1%	35	2	50	380	8	5/8	16	61/4	159	13	6
5	125	7%	187	31/4	82	511/16	145	1%	35	25/8	67	635	8	3/4	19	6¾	171	20	9
6	150	8¾	222	3¾	95	63/4	171	1 7/16	36	31//8	79	864	8	3/4	19	7	178	22	10
8	200	11	279	5	127	83/4	222	13/4	44	41//8	105	1650	8	3/4	19	8	200	42	19
10	250	13%	340	51/2	140	10%	276	13/4	44	5	127	3017	12	7/8	22	9	229	68	31
12	300	161//8	409	71/8	181	121/8	327	2%	60	61/8	156	4280	12	7/8	22	10½	267	123	56

 $C_V =$ flow in GPM through a valve at 1psi pressure drop when the media is water at 68°F.

